Обратный оператор — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
Строка 1: | Строка 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{{Определение | {{Определение | ||
|definition=Пусть <tex>\mathcal{A}:X \rightarrow X</tex> — автоморфизм. Тогда <tex>\mathcal{A}^{-1}: X \rightarrow X</tex> называется '''обратным оператором''' к <tex>\mathcal{A}</tex>, если <tex>\mathcal{A} \cdot \mathcal{A}^{-1} = \mathcal{A}^{-1} \cdot \mathcal{A} = J</tex>. | |definition=Пусть <tex>\mathcal{A}:X \rightarrow X</tex> — автоморфизм. Тогда <tex>\mathcal{A}^{-1}: X \rightarrow X</tex> называется '''обратным оператором''' к <tex>\mathcal{A}</tex>, если <tex>\mathcal{A} \cdot \mathcal{A}^{-1} = \mathcal{A}^{-1} \cdot \mathcal{A} = J</tex>. |
Текущая версия на 19:29, 4 сентября 2022
Определение: |
Пусть | — автоморфизм. Тогда называется обратным оператором к , если .
Теорема (Критерий существования | ):
Для нужно и достаточно, чтобы в некотором базисе |
Доказательство: |
Доказывается в конспекте Обратная матрица |
Теорема (Критерий существования | ):
Для нужно и достаточно одного из двух условий:
|
Доказательство: |
Первое и второе утверждение равносильны в силу равенства имеет только тривиальное решение |
Ссылки
Источники
- Анин конспект