|
|
Строка 1: |
Строка 1: |
− | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
| |
− | |+
| |
− | |-align="center"
| |
− | |'''НЕТ ВОЙНЕ'''
| |
− | |-style="font-size: 16px;"
| |
− | |
| |
− | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
| |
− |
| |
− | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
| |
− |
| |
− | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
| |
− |
| |
− | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
| |
− |
| |
− | ''Антивоенный комитет России''
| |
− | |-style="font-size: 16px;"
| |
− | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
| |
− | |-style="font-size: 16px;"
| |
− | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
| |
− | |}
| |
− |
| |
| {{В разработке}} | | {{В разработке}} |
| | | |
Текущая версия на 19:26, 4 сентября 2022
Эта статья находится в разработке!
Можно существенно улучшить тест Ферма, заметив, что если [math]n[/math] — простое нечетное, то для [math]1[/math] есть только два квадратных корня по модулю [math]n:\ 1[/math] и [math]-1[/math]. Таким образом, квадратный корень из [math]a^{n-1},a^\frac{n-1}{2}[/math] равен [math]\pm 1[/math]. Если [math]\frac{n-1}{2}[/math] опять нечетно, то мы можем снова извлечь корень и так далее. Первый вариант алгоритма предлагает использовать только одно деление:
Тест Леманна
Если для какого-либо целого числа [math]a[/math] меньшего [math]n[/math] не выполняется условие [math]a^\frac{n-1}{2}=\pm 1\pmod n[/math], то число [math]n[/math] — составное. Если это условие выполняется, то число [math]n[/math] — возможно простое, причем вероятность ошибки не превышает [math]50 \%[/math].
Этот тест можно естественным образом улучшить, если извлекать корень по модулю не один раз, а столько, сколько получится.
Тест Рабина-Миллера
Запишем [math]n-1[/math] в виде [math]2^sd[/math], где [math]d[/math] нечетно, а [math]s[/math] неотрицательно: [math]n[/math] называется сильно возможно простым по основанию [math]a[/math], если выполняется одно из двух условий:
- [math]a^d=1\pmod n[/math]
- [math](a^d)^{2^r}=-1\pmod n[/math]
Определение: |
Пусть [math]n[/math] — нечетное число, большее [math]1[/math]. Число [math]n-1[/math] однозначно представляется в виде [math]n-1=2^sd[/math], где [math]d[/math] нечетно. Целое число [math]a, 1\lt a\lt n[/math] называется свидетелем простоты числа [math]n[/math], если выполняется два условия:
- [math]n[/math] не делится на [math]a[/math]
- [math]a^d\equiv 1\pmod n[/math] или существует целое [math]r[/math], такое что [math](a^d)^{2^r}=-1\pmod n[/math]
|