Теорема Иммермана — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
Строка 1: | Строка 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{{Определение | {{Определение | ||
|definition=Задача несуществования пути между двумя заданными вершинами в данном графе <tex>\mathrm{NCONN} = \{\langle G, s, t \rangle \bigm|</tex> в графе G нет пути из s в t<tex>\}.</tex> | |definition=Задача несуществования пути между двумя заданными вершинами в данном графе <tex>\mathrm{NCONN} = \{\langle G, s, t \rangle \bigm|</tex> в графе G нет пути из s в t<tex>\}.</tex> |
Текущая версия на 19:06, 4 сентября 2022
Определение: |
Задача несуществования пути между двумя заданными вершинами в данном графе | в графе G нет пути из s в t
Теорема: |
Доказательство: |
Очевидно, что язык является дополнением языка . Чтобы показать, что , придумаем недетерминированный алгоритм, использующий дополнительной памяти, который проверяет, достижима ли вершина из .Определим = { существует путь из в длиной }. Другими словами это множество всех вершин, достижимых из не более чем за шагов.Введем обозначение . Если , где , то не существует путь из в в графе , то есть .Можно построить недетерминированный алгоритм, который будет решать задачу на памяти (это будет доказано ниже).Таким образом показано, что Из соображений симметрии . Поскольку , то аналогичным образом . Получаем, что любую задачу из можно свести к задаче из , а значит . , а значит . |
Лемма: |
Можно построить недетерминированный алгоритм, который будет решать задачу на памяти. |
Доказательство: |
Для начала приведем недетерминированный алгоритм, находящий путь между двумя вершинами с длиной не более заданной. CheckPath() for do if reject if reject Теперь можно построить недетерминированный алгоритм, который будет принимать на вход и (в случае корректности ) будет перечислять все вершины из на памяти.Enumerate() //количество уже найденных и выведенных элементов for do //перебираем все вершины графа //недетерминированно угадываем путь из s до v или переходим к следующей вершине if continue CheckPath ++ output //выдаем вершину, до которой угадали путь if //не нашли вершин, не допускаем reject Enumerate перебирает все вершины на логарифмической памяти и пытается угадать путь до этой вершины из . Под угадыванием пути подразумевается последовательность недетерминированных выборов следующей вершины пути из в . Для угадывания пути необходимо памяти, так как необходимо лишь хранить текущую и следующую угадываемую вершины угадываемого пути.Теперь, имея Enumerate, можно по индукции строить . Очевидно, что , так как содержит единственную вершину — . Пусть известно значение . Напишем программу, которая на логарифмической памяти будет находить .
Next() // хотя бы один, так как for : do //перебираем все вершины графа, кроме — это кандидаты на попадание в for do //перебираем все ребра, входящие в if in Enumerate( ) //перечисляем все вершины из , если одна из них, то ++ //увеличиваем количество найденных вершин и переходим к рассмотрению следующего кандидата break return
Теперь напишем алгоритм, который будет недетерминированно решать задачу на логарифмической памяти. Он будет состоять из двух частей: вычисление и перечисление всех вершин из . Вычисление происходит путем вызова Next раз, при этом каждый раз в качестве подставляется новое полученное значение.
NCONN(Данный алгоритм использует ) // for do //вычисляем Next( ) if in Enumerate( ) //перечисляем вершины из , если была перечислена, то достижима и выдаем reject, иначе accept reject else accept памяти, так как для хранения и необходимо , и для вызываемых Next и Enumerate необходимо памяти. |