Локальная теорема о неявном отображении — различия между версиями
м (можно было просто перенести на следующую строку.) |
|||
Строка 44: | Строка 44: | ||
<tex>\forall\overline x\in V_{\delta}(\overline{x_0}),~\forall \overline y, \in W_{\delta}(\overline{y_0}).~T(\overline x,\cdot)\colon W_{\delta}(\overline{y_0})\to W_{\delta}(\overline{y_0})</tex> является сжатием с <tex>q=\frac 12</tex>, по теореме Банаха <tex>\exists y^*\in W_{\delta}(\overline{y_0}):\overline y^*=T(\overline x,\overline y^*)\Longleftrightarrow f(\overline x,\overline y^*)=0^m</tex>. В силу единственности такой точки неявное отображение определено. Пыщь-пыщь, щастье-радость! | <tex>\forall\overline x\in V_{\delta}(\overline{x_0}),~\forall \overline y, \in W_{\delta}(\overline{y_0}).~T(\overline x,\cdot)\colon W_{\delta}(\overline{y_0})\to W_{\delta}(\overline{y_0})</tex> является сжатием с <tex>q=\frac 12</tex>, по теореме Банаха <tex>\exists y^*\in W_{\delta}(\overline{y_0}):\overline y^*=T(\overline x,\overline y^*)\Longleftrightarrow f(\overline x,\overline y^*)=0^m</tex>. В силу единственности такой точки неявное отображение определено. Пыщь-пыщь, щастье-радость! | ||
}} | }} | ||
+ | <tex>\begin{cases} f(x,y,\alpha)=0\\ | ||
+ | g(x,y,\alpha)=0 \end{cases};</tex> отсюда — если существуют <tex>(x_0,y_0,\alpha_0)</tex>, такие, что <tex>\begin{cases} f(x_0,y_0,\alpha_0)=0\\ | ||
+ | g(x_0,y_0,\alpha_0)=0 \end{cases};</tex> — верно и <tex>\begin{vmatrix} \frac{\delta f}{\delta x}(x_0,y_0,\alpha_0) & \frac{\delta f}{\delta y}(x_0,y_0,\alpha_0) \\ \frac{\delta g}{\delta x}(x_0,y_0,\alpha_0) & \frac{\delta g}{\delta y}(x_0,y_0,\alpha_0)\end{vmatrix}\ne 0</tex>, а сами функции <tex>f</tex> и <tex>g</tex> — непрерывны, то тогда, по доказательству теоремы, можно утверждать, что «возмущённая система уравнений»: <tex>\begin{cases} f(x_0,y_0,\alpha_0+\mathcal 4 \alpha)=0\\ | ||
+ | g(x_0,y_0,\alpha_0+\mathcal 4 \alpha)=0 \end{cases};</tex> при некоторых <tex>\delta > 0, |\mathcal 4 \alpha|,|x-x_0|,|y-y_0|<0</tex>, <tex>\forall\alpha</tex> будет иметь единственное решение по переменным <tex>\overline x,\overline y</tex>. Выяснить этот факт для конкретной системы некоторым прямым методом, как правило, невозможно.<br> | ||
+ | <u>Важное следствие</u>: Пусть <tex>\exists T\colon\mathbb R^n \to\mathbb R^n ; det(T'(\overline {x_0}))\ne 0</tex>. Тогда это отображение в окрестности этой точки локально обратимо. | ||
+ | <tex>\vartriangleright</tex>А здесь когда-то, возможно, когда-то будет доказательство<tex>\vartriangleleft</tex> | ||
<references/> | <references/> |
Версия 00:30, 5 июня 2011
1) Принцип сжатия Банаха
Пусть - B-пространство; пусть — замкнутый шар в ; . Оно называется сжатием на этом шаре, если , такое, что
Теорема: |
У любого сжимающего отображения существует неподвижная точка |
Доказательство: |
|
2)
, . Существуют ли такие , что ?
Если это так, то в силу единственности y определяем на так, чтобы . — неявное отображение, определяется как
Пример, единичная окружность:
В малых окрестностях начальных данных вертикаль, проведённая через , будет давать соответствующий единственный . Если решать задачу вне окрестности , получится 2 , теряется единственность . Именно поэтому крайне важно указывать окрестности, в которых мы ищем отображения. .
Сейчас мы установим условия, при которых неявное отображение будет существовать:
— произвольное отображение , при фиксированном и варьирующемся .
(зависит и от , и от ). Непрерывность : производная — линейный оператор, поэтому непрерывность понимается в метрике линейного оператора:
— матрица, размером . Оператор непрерывно обратим(???) в у этой матрицы существует обратная (её детерминант не равен нулю).
Теорема (О неявном отображении): |
Пусть для поставлена задача о неявном отображении, с начальными данными . Известно, что в окрестности начальных данных непрерывно зависит от ; и в она непрерывно обратима. Тогда в некоторой окрестности начальных данных неявное отображение существует. |
Доказательство: |
Доказательство разбиваем на 2 этапа (и на экзамене они тоже будут спрашиваться по отдельности): 2 этап: На первом этапе найден коэффициент сжатия:
|
Важное следствие: Пусть . Тогда это отображение в окрестности этой точки локально обратимо.
А здесь когда-то, возможно, когда-то будет доказательство
- ↑ Здесь у меня какая-то муть, пофиксьте, позязя.