Доказательство теоремы Эдмондса-Лоулера — различия между версиями
Строка 24: | Строка 24: | ||
Пусть <tex>r_1(A) > |I \cap A|</tex>. Обозначим <tex>(I \cap A) \cup \{u\}</tex> как <tex>A'</tex>. Заметим, что <tex>A' \in I_1</tex>. | Пусть <tex>r_1(A) > |I \cap A|</tex>. Обозначим <tex>(I \cap A) \cup \{u\}</tex> как <tex>A'</tex>. Заметим, что <tex>A' \in I_1</tex>. | ||
Возможны 2 случая: | Возможны 2 случая: | ||
− | # <tex> | + | # <tex>A' \cap I = \varnothing</tex>, тогда <tex>u \in S</tex>, что приводит к противоречию. |
# Можно добавлять из <tex>I \setminus A'</tex> в <tex>A'</tex>, пока <tex>|I| > |A'|</tex> (по аксиоме замены в <tex>M_1</tex>). Теперь <tex>A' = I \setminus \{z\}</tex>. <tex>I \setminus \{z\} \cup \{u\} \in I_1</tex>, следовательно, ребро <tex>zu \in G_I</tex>, что приводит к противоречию. | # Можно добавлять из <tex>I \setminus A'</tex> в <tex>A'</tex>, пока <tex>|I| > |A'|</tex> (по аксиоме замены в <tex>M_1</tex>). Теперь <tex>A' = I \setminus \{z\}</tex>. <tex>I \setminus \{z\} \cup \{u\} \in I_1</tex>, следовательно, ребро <tex>zu \in G_I</tex>, что приводит к противоречию. | ||
Следовательно, <tex>r_1(A) = |I \cap A|</tex>. Аналогично, <tex>r_2(\overline A) = |I \cap \overline A|</tex>. Отсюда <tex>r_1(A) + r_2(\overline A) = |I|</tex>, то есть при найденных <tex>I</tex> и <tex>A</tex> достигается равенство. | Следовательно, <tex>r_1(A) = |I \cap A|</tex>. Аналогично, <tex>r_2(\overline A) = |I \cap \overline A|</tex>. Отсюда <tex>r_1(A) + r_2(\overline A) = |I|</tex>, то есть при найденных <tex>I</tex> и <tex>A</tex> достигается равенство. |
Версия 23:52, 7 июня 2011
Теорема (Эдмондса - Лоулера): | ||
Пусть , — матроиды. Тогда Где . и — ранговые функции в первом и втором матроиде соответственно. | ||
Доказательство: | ||
Неравенство здесь. доказываетсяКонструктивно построим такие и , что . Этого будет достаточно для доказательства теоремы.Обозначим , . Если , добавим их пересечение в .
Построим граф замен . Добавим вершину , не влияющую на независимость в первом матроиде — из неё будут вести рёбра во все вершины множества . Пусть — кратчайший путь из в , — путь с добавленным в начало ребром из . По лемме 1 и лемме о единственном паросочетании . Теперь добавим вершину , не влияющую на независимость во втором матроиде — в неё будут вести рёбра из всех вершин множества . Тогда (путь с добавленным ребром в ) — кратчайший путь из в . Аналогично, . Отсюда следует, что , причём . Будем таким образом увеличивать , пока существует путь . Рассмотрим момент, когда такого пути не нашлось. Введём обозначение: . Докажем, что от противного. Пусть . Обозначим как . Заметим, что . Возможны 2 случая:
Следовательно, Построен пример равенства, значит, теорема доказана. . Аналогично, . Отсюда , то есть при найденных и достигается равенство. | ||