Определение функционального ряда — различия между версиями
Baev.dm (обсуждение | вклад) (→Пример) |
Baev.dm (обсуждение | вклад) (→Пример) |
||
Строка 41: | Строка 41: | ||
На <tex>D</tex>, <tex>\sum\limits_{n = 0}^\infty x^n = \frac1{1 - x}</tex> | На <tex>D</tex>, <tex>\sum\limits_{n = 0}^\infty x^n = \frac1{1 - x}</tex> | ||
+ | [[Равномерная сходимость функционального ряда|>>]] | ||
[[Категория:Математический анализ 1 курс]] | [[Категория:Математический анализ 1 курс]] |
Версия 01:19, 10 июня 2011
Определения
Определение: |
На | задана последовательность функций . Тогда говорят, что имеется фукциональная последовательность.
определена числовая последовательность , поэтому можно говорить о пределе соответствующей числовой последовательности. Но предел может существовать не на всем .
Определение: |
Область сходимости функциональной последовательности | — сходится
Определение: |
— функциональный ряд. |
Определение: |
, — сумма числового ряда. |
Из определения суммы функционального ряда видно, что это предел специальной последовательности — . Отсюда, исследование ряда на сходимость — исследование на сходимость последовательности сумм.
В тех местах, где это удобно, исследуются функциональные последовательности, а там, где нет, числовые ряды.
Пример
Тогда, при ,
,
На
,