Формула Тейлора для функций многих переменных — различия между версиями
Niko (обсуждение | вклад) |
|||
Строка 1: | Строка 1: | ||
+ | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
+ | |+ | ||
+ | |-align="center" | ||
+ | |'''НЕТ ВОЙНЕ''' | ||
+ | |-style="font-size: 16px;" | ||
+ | | | ||
+ | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
+ | |||
+ | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
+ | |||
+ | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
+ | |||
+ | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
+ | |||
+ | ''Антивоенный комитет России'' | ||
+ | |-style="font-size: 16px;" | ||
+ | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
+ | |-style="font-size: 16px;" | ||
+ | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
+ | |} | ||
+ | |||
[[Дифференцируемые отображения в нормированных пространствах|<<]] [[Безусловный экстремум функции многих переменных|>>]] | [[Дифференцируемые отображения в нормированных пространствах|<<]] [[Безусловный экстремум функции многих переменных|>>]] | ||
Версия 09:26, 1 сентября 2022
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Как ранее было установлено, для функции одной переменной
выполняется следующее:
Такую форму записи можно перенести и на функцию из n переменных:
переходит в , а — в , но сначала нужно дополнить наши теоретические построения.Определим частные производные и дифференциалы высших порядков.
— оператор, дифференцирующий функцию по . Последовательное применение такого рода оператора даёт нам частные производные высших порядков. Пусть . Тогда — частная производная второго порядка функции . Дифференцирование осуществляется по переменной в знаменателе, слева направо.
В каком случае
?Докажем теорему, отвечающую на этот вопрос для функции двух переменных, для функции n переменных можно поступить аналогично.
Теорема (О смешанных производных): |
Пусть в двумерном шаре у функции существуют смешанные производные второго порядка и каждая из них непрерывна в некоторой точке этого шара. Тогда в : |
Доказательство: |
Если поменять местами операции, то мы получим то же самое (после раскрытия скобок). Цель доказательства — перезаписать это арифметическое равенство в частных производных второго порядка. Появятся дополнительные параметры, которые должны сократиться, и в итоге мы получим .Введём функцию:
Введем функцию:
Аналогично:
Левые части двух равенств выше равны, значит, равны и правые. Рассмотрим :В оба выражения непрерывны. Устремим и по непрерывности в пределе приходим к нужной формуле. |
Следствие: Если в некотором шаре функция многих переменных имеет частные производные до
-го порядка включительно, и каждая из них непрерывна, то результат дифференцирования от последовательности переменных не зависит, важно лишь число дифференцирований по каждой переменной: , например.
Определение дифференциалов высших порядков:
. Частные производные — непрерывны. Теперь пусть , : ,
При линейной замене переменных дифференциал первого порядка инвариантен (да и n-го тоже).
, .
Формула Тейлора
Рассмотрим пару
:
Так как мы делали линейную замену, можно просто подставить
обратно, тогда получим:— формула Тейлора для функции многих переменных.
В частности, при
: