Доказательство теоремы Эдмондса-Лоулера — различия между версиями
Строка 31: | Строка 31: | ||
Будем таким образом увеличивать <tex>I</tex>, пока существует путь <tex>p</tex>. Рассмотрим момент, когда такого пути не нашлось. | Будем таким образом увеличивать <tex>I</tex>, пока существует путь <tex>p</tex>. Рассмотрим момент, когда такого пути не нашлось. | ||
Введём обозначение: <tex>A = \{u|u \rightsquigarrow T\}</tex>. Докажем, что <tex>r_1(A) = |I \cap A|</tex> от противного. | Введём обозначение: <tex>A = \{u|u \rightsquigarrow T\}</tex>. Докажем, что <tex>r_1(A) = |I \cap A|</tex> от противного. | ||
− | Пусть <tex>r_1(A) > |I \cap A|</tex> | + | Пусть <tex>r_1(A) > |I \cap A|</tex>, тогда существует <tex>z \in A \setminus (I \cap A)</tex>, такое, что <tex>(I \cap A) \cup \{z\} \in I_1</tex>. Если <tex>I \cup \{z\} \in I_1</tex>, то <tex>z \in S</tex> и из <tex>S</tex> есть путь в <tex>A</tex>. Значит, <tex>I \cup \{z\} \notin I_1</tex>. Отсюда следует, что существует <tex>y \in I \setminus A</tex>, такое что <tex>I \setminus \{y\} \cup \{z\} \in I_1</tex>. Но тогда ребро <tex>yz</tex> имеется в графе, что противоречит отсутствию пути из <tex>S</tex> в <tex>T</tex>. |
− | + | ||
− | |||
− | |||
Следовательно, <tex>r_1(A) = |I \cap A|</tex>. Аналогично, <tex>r_2(\overline A) = |I \cap \overline A|</tex>. Отсюда <tex>r_1(A) + r_2(\overline A) = |I|</tex>, то есть при найденных <tex>I</tex> и <tex>A</tex> достигается равенство. | Следовательно, <tex>r_1(A) = |I \cap A|</tex>. Аналогично, <tex>r_2(\overline A) = |I \cap \overline A|</tex>. Отсюда <tex>r_1(A) + r_2(\overline A) = |I|</tex>, то есть при найденных <tex>I</tex> и <tex>A</tex> достигается равенство. | ||
Построен пример равенства, значит, теорема доказана. | Построен пример равенства, значит, теорема доказана. | ||
}} | }} |
Версия 21:20, 14 июня 2011
Теорема (Эдмондса - Лоулера): | ||||||
Пусть , — матроиды. Тогда Где . и — ранговые функции в первом и втором матроиде соответственно. | ||||||
Доказательство: | ||||||
Неравенство здесь. доказываетсяКонструктивно построим такие и , что . Этого будет достаточно для доказательства теоремы.Обозначим , . Если , добавим их пересечение в .
Построим граф замен . Добавим вершину , не влияющую на независимость в первом матроиде — из неё будут вести рёбра во все вершины множества . Пусть — кратчайший путь из в , — путь с добавленным в начало ребром из . По лемме 1 и лемме о единственном паросочетании . Теперь добавим вершину , не влияющую на независимость во втором матроиде — в неё будут вести рёбра из всех вершин множества . Тогда (путь с добавленным ребром в ) — кратчайший путь из в . Аналогично, . Отсюда следует, что , причём . Будем таким образом увеличивать , пока существует путь . Рассмотрим момент, когда такого пути не нашлось. Введём обозначение: . Докажем, что от противного. Пусть , тогда существует , такое, что . Если , то и из есть путь в . Значит, . Отсюда следует, что существует , такое что . Но тогда ребро имеется в графе, что противоречит отсутствию пути из в .Следовательно, Построен пример равенства, значит, теорема доказана. . Аналогично, . Отсюда , то есть при найденных и достигается равенство. | ||||||