Изменения

Перейти к: навигация, поиск

Теорема о соотношении coNP и IP

461 байт добавлено, 00:48, 5 июня 2012
м
Нет описания правки
|statement=<tex>\mathrm{\#SAT} \in \mathrm{IP}</tex>.
|proof=
Для доказательства леммы построим программы ''<tex>\mathit{Verifier'' }</tex> и ''<tex>\mathit{Prover'' }</tex> из [[Интерактивные протоколы. Класс IP. Класс AM#Класс IP|определения]] класса <tex>\mathrm{IP}</tex>.
Сперва арифметизуем формулу <tex>\phi</tex>. Пусть полученный полином <tex>A(x_1, x_2, ..., x_m)</tex> имеет степень <tex>d</tex>.
По лемме (1) вместо условия <tex>\langle \phi, k \rangle \in \mathrm{\#SAT}</tex>, можно проверять условие <tex>\sum\limits_{x_1 = 0}^1 \ldots \sum\limits_{x_m = 0}^1 A_\phi(x_1, \ldots, x_m)=k</tex>.
Приступим к описанию ''<tex>\mathit{Verifier''}</tex>'а.
'''Шаг 0'''
Если <tex>d=0</tex> или <tex>m=0</tex>, то ''<tex>\mathit{Verifier'' }</tex> может проверить указанное выше условие сам и вернуть соответствующий результат.Иначе запросим у ''<tex>\mathit{Prover''}</tex>'а такое простое число <tex>p</tex>, что <tex>3dm \le p \le 6dm</tex> (такое <tex>p</tex> существует в силу [http://ru.wikipedia.org/wiki/Постулат_Бертрана постулата Бертрана]). Проверим <tex>p</tex> на простоту и на принадлежность заданному промежутку. Как мы [[Класс P#Примеры задач и языков из P|знаем]], <tex>\mathrm{Primes} \in \mathrm{P}</tex>, следовательно на эти операции у ''<tex>\mathit{Verifier''}</tex>'а уйдёт полиномиальное от размера входа время.
Далее будем проводить все вычисления модулю <tex>p</tex>.
Попросим ''<tex>\mathit{Prover'' }</tex> 'а прислать ''<tex>\mathit{Verifier'' }</tex>'у формулу <tex>A_0(x_1)= \sum\limits_{x_2 = 0}^{1}\ldots\sum\limits_{x_m = 0}^{1} A(x_1, x_2, ..., x_m)</tex>. Заметим, что размер формулы <tex>A_0(x_1)</tex> будет полином от длины входа ''<tex>\mathit{Verifier'' }</tex> 'а, так как <tex>A_0(x_1)</tex> — полином степени не выше, чем <tex>d</tex>, от одной переменной, а значит его можно представить в виде <tex>A_0(x) = \sum\limits_{i = 0}^{d} C_i \cdot x ^ i</tex>.
Проверим следующее утверждение: <tex>A_0(0) + A_0(1) = k</tex> (*) (здесь и далее под словом «проверим» будем подразумевать следующее: если утверждение верно, ''<tex>\mathit{Verifier'' }</tex> продолжает свою работу, иначе он прекращает свою работу и возвращет '''false''').
'''Шаг i'''
Пусть <tex>r_i = random(0..p-1)</tex>. Отправим <tex>r_i</tex> программе ''<tex>\mathit{Prover''}</tex>.
Попросим ''<tex>\mathit{Prover'' }</tex> 'а прислать ''<tex>\mathit{Verifier'' }</tex>'у формулу <tex>A_i(x_{i+1}) = \sum\limits_{x_{i+2} = 0}^{1}\ldots\sum\limits_{x_m = 0}^{1} A(r_1,\ldots, r_i, x_{i+1}, ..., x_m)</tex>.
Проверим следующее утверждение: <tex>A_i(0) + A_i(1) = A_{i-1}(r_i)</tex> (*).
'''Шаг m'''
Пусть <tex>r_m = random(0..p-1)</tex>. Отправим <tex>r_m</tex> программе ''<tex>\mathit{Prover''}</tex>.
Попросим программу ''<tex>\mathit{Prover'' }</tex> прислать ''<tex>\mathit{Verifier'' }</tex>'у значение <tex>A_m()= A(r_1, r_2, ..., r_m)</tex>.
Проверим следующее утверждение: <tex>A_m() = A_{m-1}(r_m)</tex> (*).
Возвращаем '''true'''.
Докажем теперь, что построенный таким образом ''<tex>\mathit{Verifier'' }</tex> — корректный. Для этого нужно доказать следующие утверждения:# Построенный ''<tex>\mathit{Verifier'' }</tex> - вероятностная машина Тьюринга, совершающая не более полинома от длины входа действий.
# <tex>\langle \varphi, k \rangle \in \mathrm{\#SAT} \Rightarrow \exists \mathit{Prover} : P(\mathit{Verifier^{Prover}}(\langle \varphi, k \rangle)=1) \ge 2/3</tex>.
# <tex>\langle \varphi, k \rangle \notin \mathrm{\#SAT} \Rightarrow \forall \mathit{Prover} : P(\mathit{Verifier^{Prover}}(\langle \varphi, k \rangle)=1) \le 1/3</tex>.
Докажем эти утверждения.
#Первый факт следует из построения ''<tex>\mathit{Verifier'' }</tex> 'а.#По [[Арифметизация булевых формул с кванторами | лемме (2)]], если <tex>\sum\limits_{x_1 = 0}^1 \ldots \sum\limits_{x_m = 0}^1 A_\phi(x_1, \ldots, x_m)=k</tex>, то условия (*) выполнятются, следовательно существует такой ''<tex>\mathit{Prover''}</tex>, что <tex>P(\mathit{Verifier^{Prover}}(\langle\phi,k\rangle)) = 1</tex>, для любой пары <tex>\langle\phi,k\rangle \in \mathrm{\#SAT}</tex>.#Пусть количество наборов, удовлетворяющих <tex>\phi</tex>, не равно <tex>k</tex>. Для того, что бы ''<tex>\mathit{Verifier'' }</tex> вернул '''true''', ''<tex>\mathit{Prover'' }</tex> 'у необходимо посылать такие <tex>A_i</tex>, чтобы выполнялись все проверяемые условия. Посмотрим на то, что он может послать:
:'''Шаг 0'''
:Так как количество наборов, удовлетворяющих <tex>\phi</tex>, не равно <tex>k</tex>, то ''<tex>\mathit{Prover'' }</tex> не может послать правильное <tex>A_0</tex>, поскольку в этом случае не выполнится условие <tex>A_0(0) + A_0(1) = k</tex>. Поэтому он посылает не <tex>A_0</tex>, а некое <tex>\tilde{A}_0</tex>.
:<tex>\ldots</tex>
:'''Шаг i'''
:Заметим, что если на каком-то шаге <tex>A_{i-1}(r_i) = \tilde{A}_{i-1}(r_i)</tex>, то начиная со следующего шага ''<tex>\mathit{Prover'' }</tex> может посылать правильные <tex>A_j</tex> и в итоге ''<tex>\mathit{Verifier'' }</tex> вернёт '''true'''.
:Для некоторого случайно выбранного <tex>r_i</tex> вероятность того, что <tex>A_{i-1}(r_i) = \tilde{A}_{i-1}(r_i)</tex>, то есть <tex>r_i</tex> — корень полинома <tex>(A_{i-1} - \tilde{A}_{i-1})(r_i)</tex>, имеющего степень не больше <tex>d</tex>, не превосходит <tex>\frac{d}{p}</tex>.
:<tex>\ldots</tex>
:'''Шаг m'''
:Так как на последнем шаге ''<tex>\mathit{Verifier'' }</tex> полученным от ''<tex>\mathit{Prover'' }</tex> значение с непосредственно вычисленным, слово будет допущено только в том случае, когда ''<tex>\mathit{Prover'' }</tex> смог прислать верное значение, что в свою очередь возможно лишь если на одном из предыдущих шагов был верно угадан корень полинома.
:
:Вычислим вероятность того, что хотя бы раз корень был угадан.
:В последнем переходе мы воспользовались [http://ru.wikipedia.org/wiki/Ряд_Тейлора формулой Тейлора] для логарифма и экспоненты, а также тем, что <tex>m>0</tex>.
Таким образом, построенный нами ''<tex>\mathit{Verifier'' }</tex> корректен, а значит лемма доказана.
}}

Навигация