Изменения

Перейти к: навигация, поиск

Теория Рамсея

29 байт убрано, 02:45, 7 января 2014
Экстремальные примеры и оценки снизу
Существует гипотеза что любой граф <tex>R(k,k)</tex> изоморфен своему дополнению(или что в раскраске полного графа на <tex>r(k,k)-1</tex> вершинах в два цвета граф с рёбрами цвета 1 обязательно изоморфен графу с рёбрами цвета 2). Однако, это не белее чем красивое предположение, в обоснование которого можно положите лишь немногие известные примеры.
{{Теорема|id=t2ter2|authorabout=P. Erdos2
|statement=Для любого натурального числа <tex>k \ge 2</tex> выполняется неравенство <tex>r(k,k) \ge k^{k/2}</tex>
|proof=
Посчитаем графы с кликой на <tex>k</tex> вершинах так: существует <tex>C^k_n</tex> способов выбрать <tex>k</tex> вершин для клики в нашем множестве, после чего все рёбра между ними будем считать проведенными, а остальные ребра выбираются произвольным образом. Таким образом, каждый граф с кликой на <tex>k</tex> вершинах будет посчитан причём некоторые даже более одного раза. Количестве графов с кликой оказывается не более, чем <tex>C^k_n*2^{C^2_n-C^2_k}</tex>. Следовательно,
<tex>g(n,k) \le \frac{C^k_n}{2^{C^2_k}}<\frac{n^k}{k!*2^{C^2_k}}</tex>*
Подставив <tex>n<2^{k/2}</tex> в [[#t2|неравенстве]] неравенство * мы получаем
<tex>g(n,k)<\frac{2^{k^2/2}*2^{-C^2_k}}{k!}=\frac{2^{k/2}}{k!}<\frac12</tex> при <tex>k \ge 3</tex>
}}
{{Утверждение|id=ts2
|about=Следствие 2
|statement=Для любых <tex>k,m \in \mathbb N</tex> таких, что <tex>2 \le k \le m</tex>, выполняется неравенство <tex>r(k,m) \ge 2^{k/2}</tex>
}}
299
правок

Навигация