Изменения

Перейти к: навигация, поиск
Нет описания правки
Пусть <tex> f </tex> и <tex> g </tex> {{---}} потоки равной величины в сети <tex> G </tex>. Тогда <tex> g </tex> можно представить как сумму <tex> f </tex> и нескольких циклов в остаточной сети <tex> G_f </tex>, т.е. <tex>g = f + \sum_{i} C_i </tex>.
|proof=
Рассмотрим разность потоков <tex> g - f </tex>, <tex> |g - f| = 0 </tex>. Построим ее [[теорема о декомпозиции|декомпозицию]]. В декомпозиции могут быть только циклы, т.к. наличие путей <tex> s \leadsto t</tex> противоречило бы нулевой величине потока. Таким образом, получили разбиение разности потоков на циклы. Заметим, что <tex> g(u,v) - f(u,v) \le leqslant c(u, v) - f(u, v) = c_f(u, v)</tex>, т.е. все циклы принадлежат <tex>G_f</tex>.
}}
<tex>\Rightarrow </tex> <tex>\sum_{(u,v) \in E} p(u,v) \cdot (f + f_+)(u,v) < \sum_{(u,v) \in E} p(u,v) \cdot f(u, v)</tex> <tex>\Rightarrow f </tex> {{---}} не минимальный. Противоречие.
*<tex>\Leftarrow </tex>
Рассмотрим поток <tex> f </tex>, такой что в <tex> G_f </tex> нет циклов отрицательной стоимости. Рассмотрим <tex> f' </tex> {{---}} поток величины <tex> |f| </tex> и минимальной стоимости, т. е. <tex> p(f') \leq leqslant p(f) </tex>. По лемме представим <tex>f' = f + \sum_{i} C_i </tex>. По условию стоимости всех циклов неотрицательны. Получаем <tex> p(f') \geq p(f) \Rightarrow p(f') = p(f)</tex>.
}}
Анонимный участник

Навигация