Изменения

Перейти к: навигация, поиск
Примеры применения теоремы
* Вычислим производящую функцию последовательности <tex>a_0 = 1, a_n = k \cdot a_{n - 1}</tex>
*: Так как последовательность задана линейной рекуррентой, её производящая функция, согласно теореме, имеет вид <tex>F(t) = \dfrac{P(t)}{Q(t)}</tex>, где <tex>Q(t) = 1 - k \cdot xt</tex> (так как <tex>c_1 = k</tex>), а <tex>deg(P) < 2</tex>.*: Будем искать производящую функцию в виде <tex>F(t) = \dfrac{C}{1 - k \cdot xt}, C \in \mathbb{R}</tex>*: Пусть <tex>F(t) = a_0 + a_1 \cdot t + a_2 \cdot t^2 + \ldots + a_n \cdot t^n + \ldots </tex>, тогда <tex>a_0 + a_1 \cdot t + a_2 \cdot t^2 + \ldots + a_n \cdot t^n + \ldots = \dfrac{C}{1 - k \cdot xt}</tex>, следовательно <tex>(a_0 + a_1 \cdot t + a_2 \cdot t^2 + \ldots a_n \cdot t^n + \ldots) \cdot (1 - k \cdot xt) = C</tex>
*: Пользуясь правилом перемножения формальных степенных рядов, получаем
*: <tex> C = a_0 \cdot 1 = 1 \cdot 1 = 1</tex>
*: Следовательно, <tex> F(t) = \dfrac{1}{1 - k \cdot xt}</tex>*: Таким образом, <tex> 1 + k \cdot t + (k \cdot t)^2 + \ldots + (k \cdot t)^n + \ldots = \sum\limits_{n = 0}^{\infty}k^n \cdot t^n = \dfrac{1}{1 - k \cdot xt}</tex>*: Частным случаем этой формулы являются соотношения <tex>1 + t + t^2 + \ldots t^n + \cdots = \sum\limits_{n = 0}^{\infty}t^n =\dfrac{1}{1 - xt}</tex> и <tex>1 - t + t^2 + \ldots (-1)^n \cdot t^n + \cdots = \sum\limits_{n = 0}^{\infty}(-1)^n \cdot t^n = \dfrac{1}{1 + xt}</tex> * Вычислим производящую функцию последовательности Фибоначчи <tex>f_0 = f_1 = 1, f_n = f_{n - 1} + f_{n - 2}</tex>*: Так как последовательность задана линейной рекуррентой, её производящая функция, согласно теореме, имеет вид <tex>F(t) = \dfrac{P(t)}{Q(t)}</tex>, где <tex>Q(t) = 1 - t - t^2</tex> (так как <tex>c_1 = c_2 = 1</tex>), а <tex>deg(P) < 3</tex>.*: Будем искать производящую функцию в виде <tex>F(t) = \dfrac{B + At}{1 - t - t^2}, A, B \in \mathbb{R}</tex>*: Пусть <tex>F(t) = f_0 + f_1 \cdot t + f_2 \cdot t^2 + \ldots + f_n \cdot t^n + \ldots </tex>, тогда <tex>f_0 + f_1 \cdot t + f_2 \cdot t^2 + \ldots + f_n \cdot t^n + \ldots = \dfrac{C}{1 - t - t^2}</tex>, следовательно <tex>(f_0 + f_1 \cdot t + f_2 \cdot t^2 + \ldots + f_n \cdot t^n + \ldots) \cdot (1 - t - t^2) = B + At</tex>*: Пользуясь правилами перемножения формальных степенных рядов, получаем <tex>p_n = \sum\limits_{i = 0}^{n} f_i \cdot q_{n - i}</tex>, в частности, <tex>B = p_0 = f_0 \cdot q_0 = 1 \cdot 1 = 1</tex>, а <tex>A = p_1 = f_0 \cdot q_1 + f_1 \cdot q_0 = 1 \cdot (-1) + 1 \cdot 1 = 1 - 1 = 0</tex>*: Таким образом, <tex>F(t) = \dfrac{1}{1 - t - t^2}</tex>
==См. также==
137
правок

Навигация