Изменения

Перейти к: навигация, поиск
Нет описания правки
2. <tex>B \subset A, A \in I_1 \Rightarrow B \in I_1</tex>
<tex>A \in I_1</tex>, значит <tex>\mathcal {9} S, S \in I</tex>, т.ч. такое, что <tex> A = f(S)</tex>. <tex>B = f(S \setminus f^{-1} (A \setminus B)), (S \setminus f^{-1} (A \setminus B)) \subset S \Rightarrow (S \setminus f^{-1} (A \setminus B)) \in I</tex>. Значит <tex>B \in I_1</tex>.
3. Пусть <tex> A \in I_1, A = f(S), B \in I_1, B = f(T), \mid A \mid > \mid B \mid </tex>. Докажем, что <tex> \mathcal {9} y \in A \setminus B, B \cup \mathcal{f} y \mathcal {g} \in I_1</tex>
{{Теорема
|statement = Объединение матроидов является матроидом
|proof = Рассмотрим матроиды <tex>M_1</tex> и <tex>M_2</tex> из определения объединения матроидов. Из [[Прямая сумма матроидов|леммы]] знаем, что <tex> M_1 \oplus M_2= \langle X = X_1 \times \mathcal {f} 1 \mathcal {g} \cup X_2 \times \mathcal {f} 2 \mathcal {g}, I = \mathcal {f} A \mid A = A_1 \cup A_2, A_1 \in I_1, A_2 \in I_2 \mathcal {g} \rangle </tex> является матроидом. Пусть <tex>f \colon X_1 \times \mathcal {f} 1 \mathcal {g} \cup X_2 \times \mathcal {f} 2 \mathcal {g} \to X_1 \cup X_2 </tex>, такая, что <tex>f(x \times \mathcal {f} 1 \mathcal {g}) \rightarrow x </tex>, <tex>f(x \times \mathcal {f} 2 \mathcal {g}) \rightarrow x </tex>. Тогда по лемме <tex> M_3 = \langle X_1 \cup X_2, I_3 = \mathcal {f} f(A) \mid A \in I \mathcal {g} \rangle</tex> — матроид, в котором независимым множествам соответствуют объединения независимых множеств в <tex>M_1</tex> и <tex>M_2</tex>. То есть <tex>M_3 = M_1 \cup M_2</tex>.
}}
Анонимный участник

Навигация