Примеры матроидов — различия между версиями
(→Графовый матроид) |
(→Графовый матроид) |
||
Строка 45: | Строка 45: | ||
В графе <tex>G_A = \langle V, A \rangle </tex> как минимум две компоненты связанности, иначе <tex>G_A</tex> являлся бы остовным деревом и не существовало бы ациклического множества с большей мощностью. | В графе <tex>G_A = \langle V, A \rangle </tex> как минимум две компоненты связанности, иначе <tex>G_A</tex> являлся бы остовным деревом и не существовало бы ациклического множества с большей мощностью. | ||
− | Допустим в <tex>B</tex> не существует ребра, соединяющего две различные компоненты связанности из <tex>G_A</tex>, значит любая компонента связанности из <tex>G_B</tex> целиком вершинно-входит в какую-либо компоненту из <tex>G_A</tex>. Рассмотрим любую компоненту связанности Q из <tex>G_A</tex>, у неё <tex>k</tex> вершин и <tex>k - 1</tex> рёбер. Теперь рассмотрим все компоненты связанности <tex>P_i</tex> из <tex>G_B</tex> вершинно-входящие в <tex>Q</tex>, пусть их <tex>m</tex> штук, тогда суммарное кол-во рёбер из равно <tex>k - m</tex> что не превосходит <tex>k - 1</tex> (кол-во рёбер в <tex>Q</tex>). Просуммируем неравенство по всем компонентам связанности из <tex>G_A</tex> и получим <tex>\mid A \mid \ge \mid B \mid</tex> что | + | Допустим в <tex>B</tex> не существует ребра, соединяющего две различные компоненты связанности из <tex>G_A</tex>, значит любая компонента связанности из <tex>G_B</tex> целиком вершинно-входит в какую-либо компоненту из <tex>G_A</tex>. Рассмотрим любую компоненту связанности Q из <tex>G_A</tex>, у неё <tex>k</tex> вершин и <tex>k - 1</tex> рёбер. Теперь рассмотрим все компоненты связанности <tex>P_i</tex> из <tex>G_B</tex> вершинно-входящие в <tex>Q</tex>, пусть их <tex>m</tex> штук, тогда суммарное кол-во рёбер из равно <tex>k - m</tex> что не превосходит <tex>k - 1</tex> (кол-во рёбер в <tex>Q</tex>). Просуммируем неравенство по всем компонентам связанности из <tex>G_A</tex> и получим <tex>\mid A \mid \ge \mid B \mid</tex> что противоречит условию. Значит предположение не верно и в <tex>B</tex> существует искомое ребро <tex>x</tex> из разных компонент связанности <tex>G_B</tex>. |
}} | }} |
Версия 19:44, 27 июня 2011
Матричный матроид
Определение: |
Пусть | - векторное пространство над телом , пусть набор векторов из пространства является носителем . Элементами независимого множества данного матроида являются множества линейно-независимых векторов из набора . Тогда , называется матричным матроидом
Лемма: |
Матричный матроид является матроидом. |
Доказательство: |
Проверим выполнение аксиом независимости: 1) Множество в котором нет векторов является линейно-независимым. 2) Если из набора линейно-независимых векторов убрать некоторые, то этот набор не станет зависимым. 3) Пусть не так. Тогда множество векторов - линейно зависимо. Значит оно образует базис в пространстве векторов "натянутом" на множество векторов . Но тогда , так как мощность базиса больше мощности любого линейно-независимого множества, а - линейно-независимо. Противоречие с условием. По условию . |
Графовый матроид
Определение: |
Пусть | - неориентированный граф. Тогда , где состоит из всех ацикличных множеств ребер (то есть являющихся лесами), называют графовым (графическим) матроидом.
Лемма: |
Графовый матроид является матроидом. |
Доказательство: |
Проверим выполнение аксиом независимости: 1) Пустое множество является ациклическим, а значит входит в .2) Очевидно, что любой подграф леса, так же является лесом, а значит входит в вследствие своей ацикличности.3) В графе Допустим в как минимум две компоненты связанности, иначе являлся бы остовным деревом и не существовало бы ациклического множества с большей мощностью. не существует ребра, соединяющего две различные компоненты связанности из , значит любая компонента связанности из целиком вершинно-входит в какую-либо компоненту из . Рассмотрим любую компоненту связанности Q из , у неё вершин и рёбер. Теперь рассмотрим все компоненты связанности из вершинно-входящие в , пусть их штук, тогда суммарное кол-во рёбер из равно что не превосходит (кол-во рёбер в ). Просуммируем неравенство по всем компонентам связанности из и получим что противоречит условию. Значит предположение не верно и в существует искомое ребро из разных компонент связанности . |
Трансверсальный матроид
Определение: |
Пусть | - двудольный граф. Тогда паросочетание называют трансверсальным матроидом.
Лемма: |
Трансверсальный матроид является матроидом. |
Доказательство: |
Проверим выполнение аксиом независимости: 1) Пустое паросочетание удовлетворяет условию. 2) Подмножество паросочетания также является паросочетанием. Удалим из исходного паросочетания ребра, концами которых являются вершины из множества . Оставшееся множество ребер будет являться паросочетанием, которое обозначим за . И будет выполняться условие , что значит, .3) Раскрасим ребра из паросочетания, соответствующего в синий цвет, а соответствующего — в красный. Причем ребра, соответствующие двум паросочетаниям, будут окрашены в пурпурный цвет. Таким образом, получится ребер синего цвета, ребер красного цвета, и будет выполняться соотношение . Рассмотрим подграф , индуцированный красными и синими ребрами из исходного графа. Каждая вершина соответствует либо двум ребрам — синему и красному, либо одному — синему или красному. Любая компонента связности представляет собой либо путь, либо цикл, состоящий из чередующихся красных и синих ребер. Так как граф двудольный, любой цикл состоит из четного числа ребер. Так как синих ребер больше, чем красных, то должен существовать путь, начинающийся и оканчивающийся синим ребром. Обозначим этот путь . Поменяем в синий и красный цвета. Получаем, что ребра, окрашенные в красный и пурпурный цвета образуют паросочетание в графе. Очевидно, что подмножество соответствующее этому новому паросочетанию имеет вид , где . Что значит, что . |
Универсальный матроид
Определение: |
Универсальным матроидом называют объект |
Лемма: |
Универсальный матроид является матроидом. |
Доказательство: |
Проверим выполнение аксиом независимости: 1)
2)
3) Так как Рассмотрим и числа в каждом множестве различны, найдётся такое число , которое не будет принадлежать меньшему по мощности множеству . . |