|
|
Строка 39: |
Строка 39: |
| Тогда из предположения индукции имеем, что <tex> (1) = </tex> <tex> \sum \limits_{I_{n-1}} (-1)^{|I_{n-1}|+1} \bigg| \bigcap \limits_{ j \in I_{n-1} } \Big( A_j \bigcap A_n \Big) \bigg| = \sum \limits_{I_{n-1}} (-1)^{|I_{n-1}|+1} \Big| \bigcap \limits_{ j\in I_{n-1} \cup \{ n \} } A_j \Big| </tex> | | Тогда из предположения индукции имеем, что <tex> (1) = </tex> <tex> \sum \limits_{I_{n-1}} (-1)^{|I_{n-1}|+1} \bigg| \bigcap \limits_{ j \in I_{n-1} } \Big( A_j \bigcap A_n \Big) \bigg| = \sum \limits_{I_{n-1}} (-1)^{|I_{n-1}|+1} \Big| \bigcap \limits_{ j\in I_{n-1} \cup \{ n \} } A_j \Big| </tex> |
| | | |
− | <center>
| |
− | </center>
| |
| | | |
− |
| |
− | <center>
| |
| Таким образом: | | Таким образом: |
− | </center>
| |
| | | |
| | | |
− | <center>
| + | <tex> | A |=| A_n |+\Bigg( \sum \limits_{I_{n-1}} (-1)^{|I_{n-1}|+1} \Big| \bigcap \limits_{ j \in I_{n-1} } A_j \Big| \Bigg) - - \Bigg( \sum \limits_{I_{n-1}} (-1)^{|I_{n-1}|+1} \Big| \bigcap \limits_{ j\in I_{n-1} \cup \{ n \} } A_j \Big| \Bigg) = \sum \limits_{I_n} (-1)^{|I_n|+1} \Big| \bigcap \limits_{ j \in I_n } A_j \Big| </tex> |
− | <tex> | A |=| A_n |+\Bigg( \sum \limits_{I \subset \{ 1,2, \ldots ,n-1 \} } (-1)^{|I|+1} \Big| \bigcap \limits_{ j \in I } A_j \Big| \Bigg) - - \Bigg( \sum \limits_{I \subset \{ 1,2, \ldots ,n-1 \} } (-1)^{|I|+1} \Big| \bigcap \limits_{ j\in I \cup \{ n \} } A_j \Big| \Bigg) = \sum \limits_{I \subset \{ 1,2, \ldots ,n \} } (-1)^{|I|+1} \Big| \bigcap \limits_{ j \in I } A_j \Big| </tex> | |
− | </center>
| |
| | | |
| + | Значит для <tex>~l=n</tex> мы доказали, что равенство верно. Значит индукционный переход доказан, то теорема доказана. |
| }} | | }} |
Версия 03:11, 19 октября 2011
Формула включения-исключения
Формула включения-исключения - это комбинаторная формула, которая позволяет определить мощность объединения конечных множеств, если известны их мощности и мощности всех их возможных пересечений.
Например, в случае двух множеств [math]~A, B[/math] формула включения-исключения имеет вид:
[math] | A \cup B | = | A | + | B | - | A \cap B |[/math]
В сумме [math]~| A | + | B |[/math] элементы пересечения [math]A \cap B[/math] учтены дважды, и чтобы компенсировать это мы вычитаем [math] | A \cap B |[/math] из правой части формулы. Справедливость этого рассуждения видна из диаграммы Эйлера-Венна для двух множеств, приведенной на рисунке справа.
Таким же образом и в случае [math]~n\gt 2[/math] множеств процесс нахождения количества элементов объединения [math]A_1 \cup A_2 \cup \ldots \cup A_n[/math] состоит во включении всего, затем исключении лишнего, затем включении ошибочно исключенного и так далее, то есть в попеременном включении и исключении. Отсюда и происходит название формулы.
Теорема: |
Пусть [math] A = \bigcup \limits_{i=1}^{n}A_i [/math] , тогда по формуле включения-исключения: [math] | A | = \sum \limits_{I_n } (-1)^{k+1} \Big| \bigcap \limits_{ j \in I_n } A_j \Big| [/math]
Причем [math] I_n = (i_1,i_2, \ldots ,i_k) \subset \{ 1,2, \ldots ,n \} [/math], то есть некоторый набор индексов множеств(индексы этих множеств не могут превышать число [math]~n[/math]), пересечение которых мы ищем в текущем слагаемом суммы. За [math] k [/math] принимаем количество таких индексов в текущем [math] I_n [/math], за [math] j [/math] индекс текущего множества (причем [math] j \in I_n [/math]), которое будет входить в пересечение в текущем слагаемом. |
Доказательство: |
[math]\triangleright[/math] |
Будем доказывать теорему, опираясь на метод математической индукции.
Пусть [math]~l[/math] — это количество множеств, мощность пересечения которых мы ищем. Для случая [math]~l=1[/math] и [math]~l=2[/math] теорема, очевидно, верна. Таким образом, [math]~l=2[/math] — база индукции.
Предположим, что для [math]~l=n-1[/math] теорема верна, то есть равенство выполняется. Докажем, что равенство истинно для [math]~l=n[/math]
Пусть [math] A [/math]— пересечение [math]~n[/math] множеств. Тогда очевидно, что [math] A = \bigcup \limits_{i=1}^{n}A_i = \Bigg( {\bigcup \limits_{i=1}^{n-1}A_i} \Bigg) \cup A_n [/math]. Пусть [math] B = \bigcup \limits_{i=1}^{n-1}A_i [/math]
Тогда исходя из предположения индукции имеем, что
[math] | B | = \sum \limits_{I_{n-1}} (-1)^{|I_{n-1}|+1} \Big| \bigcap \limits_{ j \in I_{n-1} } A_j \Big| [/math]
Кроме того, так как формула верна для [math]~l=2[/math] (из базы индукции), то верно равенство [math] | A | = | B | + | A_n | - | B \cap A_n |[/math]. То найдем мощность множества [math]~ B \cap A_n [/math].
Очевидно, что [math] \Big| B \bigcap A_n \Big| = \Bigg| \Bigg( \bigcup \limits_{i=1}^{n-1}A_i \Bigg) \bigcap A_n \Bigg|= \Bigg| \bigcup \limits_{i=1}^{n-1} \bigg( A_i \bigcap A_n \bigg) \Bigg| (1)[/math]
Тогда из предположения индукции имеем, что [math] (1) = [/math] [math] \sum \limits_{I_{n-1}} (-1)^{|I_{n-1}|+1} \bigg| \bigcap \limits_{ j \in I_{n-1} } \Big( A_j \bigcap A_n \Big) \bigg| = \sum \limits_{I_{n-1}} (-1)^{|I_{n-1}|+1} \Big| \bigcap \limits_{ j\in I_{n-1} \cup \{ n \} } A_j \Big| [/math]
Таким образом:
[math] | A |=| A_n |+\Bigg( \sum \limits_{I_{n-1}} (-1)^{|I_{n-1}|+1} \Big| \bigcap \limits_{ j \in I_{n-1} } A_j \Big| \Bigg) - - \Bigg( \sum \limits_{I_{n-1}} (-1)^{|I_{n-1}|+1} \Big| \bigcap \limits_{ j\in I_{n-1} \cup \{ n \} } A_j \Big| \Bigg) = \sum \limits_{I_n} (-1)^{|I_n|+1} \Big| \bigcap \limits_{ j \in I_n } A_j \Big| [/math]
Значит для [math]~l=n[/math] мы доказали, что равенство верно. Значит индукционный переход доказан, то теорема доказана. |
[math]\triangleleft[/math] |