Формула включения-исключения — различия между версиями
GR1n (обсуждение | вклад) (→Формула включения-исключения) |
GR1n (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | '''Формула включения-исключения''' {{---}} это комбинаторная формула, которая позволяет определить мощность объединения конечных множеств, если известны их мощности и мощности всех их возможных пересечений. | + | '''Формула включения{{---}}исключения''' {{---}} это комбинаторная формула, которая позволяет определить мощность объединения конечных множеств, если известны их мощности и мощности всех их возможных пересечений. |
[[Файл:пересечение двух множеств.svg.png|thumb|right|Случай для двух множеств]] | [[Файл:пересечение двух множеств.svg.png|thumb|right|Случай для двух множеств]] | ||
− | Например, в случае двух множеств <tex>~A, B</tex> формула включения-исключения имеет вид: | + | Например, в случае двух множеств <tex>~A, B</tex> формула включения{{---}}исключения имеет вид: |
<center> | <center> | ||
<tex> | A \cup B | = | A | + | B | - | A \cap B |</tex> | <tex> | A \cup B | = | A | + | B | - | A \cap B |</tex> | ||
</center> | </center> | ||
− | В сумме <tex>~| A | + | B |</tex> элементы пересечения <tex>A \cap B</tex> учтены дважды, и чтобы компенсировать это мы вычитаем <tex> | A \cap B |</tex> из правой части формулы. Справедливость этого рассуждения видна из диаграммы Эйлера-Венна для двух множеств, приведенной на рисунке справа. | + | В сумме <tex>~| A | + | B |</tex> элементы пересечения <tex>A \cap B</tex> учтены дважды, и, чтобы компенсировать это, мы вычитаем <tex> | A \cap B |</tex> из правой части формулы. Справедливость этого рассуждения видна из диаграммы Эйлера{{---}}Венна для двух множеств, приведенной на рисунке справа. |
Таким же образом и в случае <tex>~n>2</tex> множеств процесс нахождения количества элементов объединения <tex>A_1 \cup A_2 \cup \ldots \cup A_n</tex> состоит во включении всего, затем исключении лишнего, затем включении ошибочно исключенного и так далее, то есть в попеременном включении и исключении. Отсюда и происходит название формулы. | Таким же образом и в случае <tex>~n>2</tex> множеств процесс нахождения количества элементов объединения <tex>A_1 \cup A_2 \cup \ldots \cup A_n</tex> состоит во включении всего, затем исключении лишнего, затем включении ошибочно исключенного и так далее, то есть в попеременном включении и исключении. Отсюда и происходит название формулы. | ||
{{Теорема | {{Теорема | ||
− | |statement=Пусть <tex> A = \bigcup \limits_{i=1}^{n}A_i </tex> , тогда по формуле включения-исключения: <center> <tex> | A | = \sum \limits_{I_n } (-1)^{k+1} \Big| \bigcap \limits_{ j \in I_n } A_j \Big| </tex> </center> | + | |statement=Пусть <tex> A = \bigcup \limits_{i=1}^{n}A_i </tex> , тогда по формуле включения{{---}}исключения: <center> <tex> | A | = \sum \limits_{I_n } (-1)^{k+1} \Big| \bigcap \limits_{ j \in I_n } A_j \Big| </tex> </center> |
Причем <tex> I_n = (i_1,i_2, \ldots ,i_k) \subset \{ 1,2, \ldots ,n \} </tex>, то есть некоторый набор индексов множеств(индексы этих множеств не могут превышать число <tex>~n</tex>), пересечение которых мы ищем в текущем слагаемом суммы. За <tex> k </tex> принимаем количество таких индексов в текущем <tex> I_n </tex>, за <tex> j </tex> индекс текущего множества (причем <tex> j \in I_n </tex>), которое будет входить в пересечение в текущем слагаемом. | Причем <tex> I_n = (i_1,i_2, \ldots ,i_k) \subset \{ 1,2, \ldots ,n \} </tex>, то есть некоторый набор индексов множеств(индексы этих множеств не могут превышать число <tex>~n</tex>), пересечение которых мы ищем в текущем слагаемом суммы. За <tex> k </tex> принимаем количество таких индексов в текущем <tex> I_n </tex>, за <tex> j </tex> индекс текущего множества (причем <tex> j \in I_n </tex>), которое будет входить в пересечение в текущем слагаемом. | ||
Версия 08:10, 19 октября 2011
Формула включения—исключения — это комбинаторная формула, которая позволяет определить мощность объединения конечных множеств, если известны их мощности и мощности всех их возможных пересечений.
Например, в случае двух множеств
формула включения—исключения имеет вид:
В сумме
элементы пересечения учтены дважды, и, чтобы компенсировать это, мы вычитаем из правой части формулы. Справедливость этого рассуждения видна из диаграммы Эйлера—Венна для двух множеств, приведенной на рисунке справа.Таким же образом и в случае
множеств процесс нахождения количества элементов объединения состоит во включении всего, затем исключении лишнего, затем включении ошибочно исключенного и так далее, то есть в попеременном включении и исключении. Отсюда и происходит название формулы.Теорема: |
Пусть , тогда по формуле включения—исключения: |
Доказательство: |
Будем доказывать теорему, опираясь на метод математической индукции. Пусть — это количество множеств, мощность пересечения которых мы ищем. Для случая и теорема, очевидно, верна. Таким образом, — база индукции.Предположим, что для теорема верна, то есть равенство выполняется. Докажем, что равенство истинно для
Заметим, что Тогда . Равенство справедливо, потому что все наборы можно разбить на три группы :1) 2) Это означает, что в наборе точно не будет присутствовать индекс , а будут все различные варианты индексов остальных множеств, т.е.3) Аналогично предыдущему, только в наборе будет индексКак видно из равенства, каждое слагаемое "отвечает" за соответствующие группы. Значит равенство истинно. Значит для мы доказали, что равенство верно. Значит индукционный переход доказан, то теорема доказана. |