Лексикографический порядок — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Определение)
(Определение)
Строка 1: Строка 1:
 
== Определение ==
 
== Определение ==
Пусть дано линейно упорядоченное множество <tex>~A=\{a_1<a_2<a_3<...<a_k\}</tex> - алфавит. Словом назовем упорядоченное множество <tex> ~S </tex>  элементов алфавита <tex> ~A </tex>. Тогда если на алфавите <tex> A </tex> задан порядок, то порядок задан и на слове <tex> ~S </tex>.
+
Пусть дано линейно упорядоченное множество <tex>~E=\{e_1<e_2<e_3<...<e_k\}</tex> - алфавит. Словом назовем упорядоченное множество <tex> ~S </tex>  элементов алфавита <tex> ~A </tex>. Тогда если на алфавите <tex> A </tex> задан порядок, то порядок задан и на слове <tex> ~S </tex>. Тогда говорят, что множество слов <tex> ~A </tex> задано в лекcикографическом порядке, если для <math>\mathcal {8} i \in A </math> <math>\mathcal {8} j \in A </math> таких, что <tex> i < j </tex> выполнено, что слово <tex> ~A_i </tex> меньше, чем слово <tex> ~A_j </tex>.
  
 
== Примеры ==
 
== Примеры ==

Версия 02:48, 31 октября 2011

Определение

Пусть дано линейно упорядоченное множество [math]~E=\{e_1\lt e_2\lt e_3\lt ...\lt e_k\}[/math] - алфавит. Словом назовем упорядоченное множество [math] ~S [/math] элементов алфавита [math] ~A [/math]. Тогда если на алфавите [math] A [/math] задан порядок, то порядок задан и на слове [math] ~S [/math]. Тогда говорят, что множество слов [math] ~A [/math] задано в лекcикографическом порядке, если для [math]\mathcal {8} i \in A [/math] [math]\mathcal {8} j \in A [/math] таких, что [math] i \lt j [/math] выполнено, что слово [math] ~A_i [/math] меньше, чем слово [math] ~A_j [/math].

Примеры

  1. Последовательность чисел в любой системе счисления, записанных в фиксированной разрядной сетке (000, 001, 002, 003, 004, 005, …, 999).
  2. Порядок слов в словаре. Предполагается, что буквы можно сравнивать, сравнивая их номера в алфавите. Тогда лексикографический порядок — это, например, ААА, ААБ, ААВ, ААГ, …, ЯЯЯ.

Ссылки