Формальные грамматики — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Обозначения: фикс обозначений)
(Определения: объединил определения)
Строка 1: Строка 1:
 
= Определения =
 
= Определения =
{{Определение
 
|definition =
 
'''Нетерминал''' — элемент, представляющий некоторую сущность языка (например, часть формулы) и не имеющий конкретного значения.<br/>
 
}}
 
 
{{Определение
 
|definition =
 
'''Терминал''' — элемент [[Основные_определения: алфавит, слово, язык, конкатенация, свободный моноид слов|алфавита]] <tex>\Sigma</tex>. <br/>
 
}}
 
  
 
{{Определение
 
{{Определение
 
|definition =  
 
|definition =  
 
'''Формальная грамматика''' — способ описания формального языка, представляющий собой четверку
 
'''Формальная грамматика''' — способ описания формального языка, представляющий собой четверку
<tex>\Gamma =\langle \Sigma, N, S \in N, P \subset N^{+}\times (\Sigma\cup N)^{*}\rangle</tex>, где <tex>\Sigma</tex> — [[Основные_определения: алфавит, слово, язык, конкатенация, свободный моноид слов|алфавит]], <tex>N</tex> — набор нетерминалов, <tex>S</tex> — начальный символ грамматики, <tex>P</tex> — набор правил вывода <tex>\alpha\rightarrow \beta</tex>
+
<tex>\Gamma =\langle \Sigma, N, S \in N, P \subset N^{+}\times (\Sigma\cup N)^{*}\rangle</tex>, где <tex>\Sigma</tex> — [[Основные_определения: алфавит, слово, язык, конкатенация, свободный моноид слов|алфавит]], элементы которого называют '''терминалами''', <tex>N</tex> — множество, элементы которого называют '''нетерминалами''', <tex>S</tex> — начальный символ грамматики, <tex>P</tex> — набор правил вывода <tex>\alpha\rightarrow \beta</tex>
 
}}
 
}}
  

Версия 17:56, 10 ноября 2011

Определения

Определение:
Формальная грамматика — способ описания формального языка, представляющий собой четверку [math]\Gamma =\langle \Sigma, N, S \in N, P \subset N^{+}\times (\Sigma\cup N)^{*}\rangle[/math], где [math]\Sigma[/math]алфавит, элементы которого называют терминалами, [math]N[/math] — множество, элементы которого называют нетерминалами, [math]S[/math] — начальный символ грамматики, [math]P[/math] — набор правил вывода [math]\alpha\rightarrow \beta[/math]


Определение:
[math]\beta[/math] выводится из [math]\alpha[/math] за один шаг ([math]\alpha \Rightarrow \beta[/math]):
  1. [math]\alpha=\alpha_1\alpha_2\alpha_3[/math]
  2. [math]\beta=\beta_1\beta_2\beta_3[/math]
  3. [math]\alpha_1=\beta1[/math], [math]\alpha_3=\beta3[/math], [math]\alpha_2\rightarrow\beta2 \in P[/math]


Определение:
[math]\beta[/math] выводится из [math]\alpha[/math] за ноль или более шагов ([math]\alpha \Rightarrow^* \beta[/math]):
[math]\exists \gamma_1, \gamma_2,...,\gamma_n : \alpha \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow ... \Rightarrow \gamma_n \Rightarrow \beta[/math]


Определение:
Языком грамматики называется [math]L(\Gamma) = \{\omega \in \Sigma^{*}|S \Rightarrow^{*}\omega\}[/math].


Обозначения

  • Нетерминалы обозначаются заглавными буквами латинского алфавита.
  • Терминалы обозначаются строчными буквами из начала латинского алфавита.
  • Последовательности из терминалов (слова) обозначают строчными буквами из конца латинского или греческого алфавита.
  • Последовательности из терминалов и нетерминалов обозначаются строчными буквами из начала греческого алфавита.

Примеры грамматик

Правильные скобочные последовательности

[math]\Sigma = \{(, )\}[/math]
[math]\begin{array}{lcr} S \rightarrow (S)\\ S \rightarrow SS\\ S \rightarrow \epsilon \end{array} [/math]

Вывод строки [math](()())[/math]:
[math]S\rightarrow(S)\rightarrow(SS)\rightarrow((S)S)\rightarrow((S)(S))\rightarrow(()(S))\rightarrow(()())[/math]

Вывод строки [math]((()())(()))[/math]:
[math]S\rightarrow(S)\rightarrow(SS)\rightarrow((S)S)\rightarrow((S)(S))\rightarrow[/math]
[math]\rightarrow((SS)((S)))\rightarrow (((S)S)((S))) \rightarrow ((()S)((S)))\rightarrow[/math]
[math]\rightarrow((()(S))((S)))\rightarrow ((()())((S)))\rightarrow ((()())(()))[/math]

Арифметические выражения

[math]\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, +, *, /, -, (, )\}[/math]

[math]\begin{array}{lcr} S \rightarrow S O S\\ S \rightarrow (S)\\ S \rightarrow 0\\ S \rightarrow DN\\ O \rightarrow + | - | * | /\\ D \rightarrow 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9\\ N \rightarrow NN | \epsilon\\ N \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 \end{array} [/math]

Вывод строки [math]2+2*2[/math]: [math]S \rightarrow SOS \rightarrow SOSOS \rightarrow 2OSOS \rightarrow 2O2OS \rightarrow 2O2O2 \rightarrow 2+2O2 \rightarrow 2+2*2[/math]

Левосторонний вывод для такой же строки: [math]S \rightarrow SOS \rightarrow 2OS \rightarrow 2+S \rightarrow 2+SOS \rightarrow 2+2OS \rightarrow 2+2*S \rightarrow 2+2*2[/math]

Литература

  • Хопкрофт Д., Мотвани Р., Ульман Д.Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — 528 с. : ISBN 5-8459-0261-4 (рус.)