Алгоритм Эрли — различия между версиями
(→Алгоритм Эрли) |
(→Корректность алгоритма) |
||
Строка 106: | Строка 106: | ||
*Необходимость <br> | *Необходимость <br> | ||
Докажем по индукции.<br> | Докажем по индукции.<br> | ||
− | База: для любой ситуации из <tex>I_0</tex> <tex>\alpha \Rightarrow^* \varepsilon </tex> и <tex>S \Rightarrow^* \gamma A \delta </tex> при <tex>\gamma = \varepsilon </tex>.<br> | + | База: для любой ситуации из <tex>I_0</tex> <tex>\alpha \Rightarrow^* \varepsilon </tex> и <tex>S \Rightarrow^* \gamma A \delta </tex> при <tex>\gamma = \varepsilon </tex>.<br> |
Индукционный переход (и.п.): пусть верно для всех ситуаций из списков <tex> I_{i}, i \leqslant j </tex>. Пусть включаем <tex>[A \rightarrow \alpha \cdot \beta, i] </tex> в <tex>I_{j}</tex>. Рассмотрим три случая:<br> | Индукционный переход (и.п.): пусть верно для всех ситуаций из списков <tex> I_{i}, i \leqslant j </tex>. Пусть включаем <tex>[A \rightarrow \alpha \cdot \beta, i] </tex> в <tex>I_{j}</tex>. Рассмотрим три случая:<br> | ||
*Пусть включаем по правилу 4<br> | *Пусть включаем по правилу 4<br> | ||
− | Тогда <tex>\alpha = \alpha' a_{j} , [A \rightarrow \alpha' \cdot a_{j} \beta, i] \in I_{j-1}</tex>. По и.п. <tex>\alpha' \Rightarrow^* a_{i+1}...a_{j-1} </tex>и существуют <tex>\gamma'</tex> и <tex>\delta' </tex> такие, что <tex>S \Rightarrow^* \gamma' A \delta', \gamma' = a_1...a_{i} </tex>. Значит <tex> \alpha = \alpha' a_{j} \Rightarrow^* a_{i+1}...a_{j}</tex> и при <tex>\gamma = \gamma', \delta = \delta' </tex> для <tex>[A \rightarrow \alpha \cdot \beta, i]</tex> утверждение верно. | + | Тогда <tex>\alpha = \alpha' a_{j} , [A \rightarrow \alpha' \cdot a_{j} \beta, i] \in I_{j-1}</tex>. По и.п. <tex>\alpha' \Rightarrow^* a_{i+1}...a_{j-1} </tex> и существуют <tex>\gamma'</tex> и <tex>\delta' </tex> такие, что <tex>S \Rightarrow^* \gamma' A \delta', \gamma' = a_1...a_{i} </tex>. Значит <tex> \alpha = \alpha' a_{j} \Rightarrow^* a_{i+1}...a_{j} </tex> и при <tex>\gamma = \gamma', \delta = \delta' </tex> для <tex>[A \rightarrow \alpha \cdot \beta, i]</tex> утверждение верно. |
*Пусть включаем по правилу 5<br> | *Пусть включаем по правилу 5<br> | ||
Тогда <tex>\alpha = \alpha' B , [A \rightarrow \alpha' \cdot B \beta, k] \in I_{i}</tex> и <tex> [B \rightarrow \eta \cdot, i] \in I_{j} </tex>. По и.п. <tex>\alpha' \Rightarrow^* a_{k+1}...a_{i}, \eta \Rightarrow^* a_{i+1}...a_{j} </tex>, откуда <tex>\alpha = \alpha' B \Rightarrow^*a_{k+1}...a_{j} </tex>. Также по и.п. существуют <tex>\gamma'</tex> и <tex>\delta' </tex> такие, что <tex>S \Rightarrow^* \gamma' A \delta', \gamma' = a_1...a_{k} </tex>. Значит при <tex>\gamma = \gamma', \delta = \delta' </tex> для <tex>[A \rightarrow \alpha \cdot \beta, i]</tex> утверждение верно. | Тогда <tex>\alpha = \alpha' B , [A \rightarrow \alpha' \cdot B \beta, k] \in I_{i}</tex> и <tex> [B \rightarrow \eta \cdot, i] \in I_{j} </tex>. По и.п. <tex>\alpha' \Rightarrow^* a_{k+1}...a_{i}, \eta \Rightarrow^* a_{i+1}...a_{j} </tex>, откуда <tex>\alpha = \alpha' B \Rightarrow^*a_{k+1}...a_{j} </tex>. Также по и.п. существуют <tex>\gamma'</tex> и <tex>\delta' </tex> такие, что <tex>S \Rightarrow^* \gamma' A \delta', \gamma' = a_1...a_{k} </tex>. Значит при <tex>\gamma = \gamma', \delta = \delta' </tex> для <tex>[A \rightarrow \alpha \cdot \beta, i]</tex> утверждение верно. | ||
Строка 115: | Строка 115: | ||
Тогда <tex>\alpha = \varepsilon, i = j, [B \rightarrow \alpha' \cdot A \beta, k] \in I_{j}</tex>. По и.п. <tex>\alpha' \Rightarrow^* a_{k+1}...a_{i}</tex> и существуют <tex>\gamma'</tex> и <tex>\delta' </tex> такие, что <tex>S \Rightarrow^* \gamma' B \delta', \gamma' = a_1...a_{k} </tex>. Значит при <tex>\gamma = \gamma' \alpha', \delta = \beta \delta' </tex> выполнено <tex> S \Rightarrow^* \gamma A \delta</tex>, значит для <tex>[A \rightarrow \alpha \cdot \beta, i]</tex> утверждение верно. | Тогда <tex>\alpha = \varepsilon, i = j, [B \rightarrow \alpha' \cdot A \beta, k] \in I_{j}</tex>. По и.п. <tex>\alpha' \Rightarrow^* a_{k+1}...a_{i}</tex> и существуют <tex>\gamma'</tex> и <tex>\delta' </tex> такие, что <tex>S \Rightarrow^* \gamma' B \delta', \gamma' = a_1...a_{k} </tex>. Значит при <tex>\gamma = \gamma' \alpha', \delta = \beta \delta' </tex> выполнено <tex> S \Rightarrow^* \gamma A \delta</tex>, значит для <tex>[A \rightarrow \alpha \cdot \beta, i]</tex> утверждение верно. | ||
*Достаточность | *Достаточность | ||
− | Для всех наборов <tex>\tau = {\alpha, \beta, \gamma, \delta, A, i , j} </tex> нужно доказать, что если <tex> S \Rightarrow^* \gamma A \delta, \gamma \Rightarrow^* a_1...a_{i}, A \rightarrow \alpha \beta \in P, \alpha \Rightarrow^* a_{i+1}... | + | Для всех наборов <tex>\tau = {\alpha, \beta, \gamma, \delta, A, i , j} </tex> нужно доказать, что если <tex> S \Rightarrow^* \gamma A \delta, \gamma \Rightarrow^* a_1...a_{i}, A \rightarrow \alpha \beta \in P, \alpha \Rightarrow^* a_{i+1}...a_{j}</tex>, то <tex> [A \rightarrow \alpha \cdot B \beta, i] \in I_{j}</tex>.<br> |
*Рангом набора <tex> \tau </tex> называется <tex> \tau_{1}(\tau) + 2(j + \tau_{2}(\tau) + \tau_{3}(\tau))</tex>, где <tex>\tau_{1}(\tau)</tex> — длина кратчайшего вывода <tex>S \Rightarrow^* \gamma A \delta </tex>, <tex>\tau_{2}(\tau)</tex> — длина кратчайшего вывода <tex>\gamma \Rightarrow^* a_1...a_{i}</tex>, <tex>\tau_{3}(\tau)</tex> — длина кратчайшего вывода <tex>\alpha \Rightarrow^* a_{i+1}...a_{j}</tex>. | *Рангом набора <tex> \tau </tex> называется <tex> \tau_{1}(\tau) + 2(j + \tau_{2}(\tau) + \tau_{3}(\tau))</tex>, где <tex>\tau_{1}(\tau)</tex> — длина кратчайшего вывода <tex>S \Rightarrow^* \gamma A \delta </tex>, <tex>\tau_{2}(\tau)</tex> — длина кратчайшего вывода <tex>\gamma \Rightarrow^* a_1...a_{i}</tex>, <tex>\tau_{3}(\tau)</tex> — длина кратчайшего вывода <tex>\alpha \Rightarrow^* a_{i+1}...a_{j}</tex>. | ||
Докажем утверждение по индукции:<br> | Докажем утверждение по индукции:<br> | ||
База: если ранг <tex>\tau</tex> равен 0, то <tex>\tau_{1} = \tau_{2} = \tau_{3} = j = i = 0</tex>. Значит <tex>\alpha = \gamma = \delta = \varepsilon </tex>, <tex>A = S</tex>, следовательно <tex>S \rightarrow \beta \in P</tex>. Значит по правилу 1 <tex>[S \rightarrow \cdot \beta, 0] \in I_0</tex> | База: если ранг <tex>\tau</tex> равен 0, то <tex>\tau_{1} = \tau_{2} = \tau_{3} = j = i = 0</tex>. Значит <tex>\alpha = \gamma = \delta = \varepsilon </tex>, <tex>A = S</tex>, следовательно <tex>S \rightarrow \beta \in P</tex>. Значит по правилу 1 <tex>[S \rightarrow \cdot \beta, 0] \in I_0</tex> | ||
− | Индукционный переход: | + | Индукционный переход: |
Пусть ранг <tex>\tau</tex> равен <tex>r > 0</tex>, пусть для всех наборов с меньшими рангами утверждение верно. Докажем для набора <tex>\tau</tex>. Для этого рассмотрим три случая: | Пусть ранг <tex>\tau</tex> равен <tex>r > 0</tex>, пусть для всех наборов с меньшими рангами утверждение верно. Докажем для набора <tex>\tau</tex>. Для этого рассмотрим три случая: | ||
*<tex>\alpha</tex> оканчивается терминалом<br> | *<tex>\alpha</tex> оканчивается терминалом<br> |
Версия 08:12, 2 декабря 2011
Определения
Определение: |
Пусть | — контекстно свободная грамматика и — входная цепочка из . Объект вида называется ситуацией, относящейся к цепочке , если — правило из и — позиция в .
Определение: |
Для каждого | построим список ситуаций такой, что для тогда и только тогда, когда для некоторых и существуют выводы и .
Определение: |
Последовательность списков | называется списком разбора для входной цепочки .
Алгоритм Эрли
Построим список разбора для
Шаг 1. Если , включить в .
Пока можно включить новые ситуации в повторяем шаги 2 и 3.
Шаг 2. Если , включить в ситуацию для всех из .
Шаг 3. Для всех , для всех таких, что включить в .
Построение по .
Шаг 4. Для каждой ситуации , где — j-й символ в , включить в .
Пока можно включить новые ситуации в повторяем шаги 5 и 6.
Шаг 5. Если , то для каждой ситуации включить в .
Шаг 6. Для всех , для всех таких, что включить в .
Если , то .
Пример
Рассмотрим грамматику
Построим для строки список разбора.
— из правила 1
— из правила 1
— из правила 3
— из правила 3
— из правила 3
— из правила 3
— из правила 4
— из правила 6
— из правила 6
— из правила 6
— из правила 6
— из правила 6
— из правила 6
— из правила 4
— из правила 5
— из правила 5
— из правила 5
— из правила 5
— из правила 5
— из правила 4
— из правила 6
— из правила 6
— из правила 6
— из правила 6
— из правила 6
— из правила 6
— из правила 4
— из правила 5
— из правила 5
— из правила 5
— из правила 5
— из правила 5
— из правила 5
— из правила 4
— из правила 5
— из правила 5
— из правила 5
— из правила 5
Так как , то .
Корректность алгоритма
Теорема: |
и и такие, что и |
Доказательство: |
Докажем по индукции.
Тогда . По и.п. и существуют и такие, что . Значит и при для утверждение верно.
Тогда и . По и.п. , откуда . Также по и.п. существуют и такие, что . Значит при для утверждение верно.
Тогда . По и.п. и существуют и такие, что . Значит при выполнено , значит для утверждение верно.
Для всех наборов
Докажем утверждение по индукции: . , значит . Рассмотрим набор . , следовательно ранг равен , так как . Значит по и.п. , по правилу 4 получаем, что будет добавлена в .
Если , то , следовательно , откуда , а по и.п. . Значит . Тогда такие, что , где .Рассмотрим набор , где такое, что . Обозначим длину кратчайшего вывода за , а длину кратчайшего вывода за . Найдем ранг . . Следовательно ранг равен . Значит по и.п. , следовательно по правилу 6 будет добавлена в . |
Литература
Ахо А., Ульман Д. Теория синтакcического анализа, перевода и компиляции. Том 1. Синтаксический анализ. Пер. с англ. — М.:«Мир», 1978. — С. 358 — 364.