Удаление eps-правил из грамматики — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Доказательство корректности)
(Доказательство корректности)
Строка 26: Строка 26:
  
 
<tex>\Rightarrow)</tex><br\>
 
<tex>\Rightarrow)</tex><br\>
Пусть <tex>A \underset{G'}{\Rightarrow}^*w, w \ne \varepsilon</tex>.<br/>
+
Пусть <tex>A \underset{G'}{\Rightarrow}^*w</tex>&nbsp; и&nbsp; <tex>w \ne \varepsilon</tex>.<br/>
 
Докажем индукцией по длине порождения, что <tex>A \underset{G}{\Rightarrow}^*w</tex>.<br/>  
 
Докажем индукцией по длине порождения, что <tex>A \underset{G}{\Rightarrow}^*w</tex>.<br/>  
 
:'''Базис'''. Пусть <tex>A \underset{G'}{\Rightarrow}^*w</tex>.<br/>
 
:'''Базис'''. Пусть <tex>A \underset{G'}{\Rightarrow}^*w</tex>.<br/>
Строка 42: Строка 42:
 
Докажем индукцией по длине порождения, что <tex>A \underset{G'}{\Rightarrow}^*w</tex>.<br/>  
 
Докажем индукцией по длине порождения, что <tex>A \underset{G'}{\Rightarrow}^*w</tex>.<br/>  
 
Обозначим длину порождения за <tex>p</tex>.<br/>
 
Обозначим длину порождения за <tex>p</tex>.<br/>
:'''Базис'''. <tex>p = 1</tex><br/>
+
:'''Базис'''. Пусть <tex>A \underset{G}{\Rightarrow}^*w</tex>.<br/>
 
<tex>A \rightarrow w</tex> является правилом в <tex>G</tex>. Поскольку <tex>w \ne \varepsilon</tex>, это же правило будет и в <tex>G'</tex>, поэтому <tex>A \underset{G'}{\Rightarrow}^*w</tex>.
 
<tex>A \rightarrow w</tex> является правилом в <tex>G</tex>. Поскольку <tex>w \ne \varepsilon</tex>, это же правило будет и в <tex>G'</tex>, поэтому <tex>A \underset{G'}{\Rightarrow}^*w</tex>.
:'''Предположение'''. Пусть из <tex>A \underset{G}{\Rightarrow}^*w</tex> и <tex>w \ne \varepsilon следует, что A \underset{G'}{\Rightarrow}^*w </tex> верно для <tex>p < n</tex>.<br/>
+
:'''Предположение'''. Пусть из <tex>A \underset{G}{\Rightarrow}^*w</tex> и <tex>w \ne \varepsilon</tex> следует, что <tex>A \underset{G'}{\Rightarrow}^*w </tex> менее, чем за <tex>n</tex> шагов.<br/>
:'''Переход'''. <tex>p = n</tex><br/>
+
:'''Переход'''. <br/>
 
Пусть в порождении <tex>n</tex> шагов, <tex>n > 1</tex>. Тогда оно имеет вид <tex>A\underset{G}{\Rightarrow}Y_1 Y_2...Y_m
 
Пусть в порождении <tex>n</tex> шагов, <tex>n > 1</tex>. Тогда оно имеет вид <tex>A\underset{G}{\Rightarrow}Y_1 Y_2...Y_m
 
\underset{G}{\Rightarrow}^*w</tex>, где <tex>Y_i \in N \cup \Sigma </tex>. Цепочку <tex>w</tex> можно разбить на <tex>w_1 w_2...w_m</tex>, где <tex>Y_i \underset{G'}{\Rightarrow}^*w_i</tex>.<br/>
 
\underset{G}{\Rightarrow}^*w</tex>, где <tex>Y_i \in N \cup \Sigma </tex>. Цепочку <tex>w</tex> можно разбить на <tex>w_1 w_2...w_m</tex>, где <tex>Y_i \underset{G'}{\Rightarrow}^*w_i</tex>.<br/>
Строка 54: Строка 54:
 
Ч.т.д.
 
Ч.т.д.
  
Подставив <tex>S</tex> вместо <tex>A</tex> в утверждение (*), видим, что <tex>w \in L(G)</tex> для <tex>w \ne \varepsilon</tex> тогда и только тогда, когда <tex>w \in L(G')</tex>.
+
Подставив <tex>S</tex> вместо <tex>A</tex> в утверждение (*), видим, что <tex>w \in L(G)</tex> для <tex>w \ne \varepsilon</tex> тогда и только тогда, когда <tex>w \in L(G')</tex>. Так как после выполнения шага 5 алгоритма в <tex>G'</tex> могло добавиться только пустое слово <tex>\varepsilon</tex>, то язык, задаваемый КС грамматикой <tex>G'</tex>, совпадает с языком, задаваемым КС грамматикой <tex>G</tex>.
 
}}
 
}}
  

Версия 03:32, 6 декабря 2011

Используемые определения

Определение:
Правила вида [math]A \to \varepsilon[/math] называются [math]\varepsilon[/math]-правилами.


Определение:
Нетерминал [math]A[/math] называется [math]\varepsilon[/math]-порождающим, если [math]A \Rightarrow^* \varepsilon[/math].


Алгоритм удаления ε-правил из грамматики

Вход: КС грамматика [math] G=\langle N,\Sigma, P, S \rangle[/math].
Выход: КС грамматика [math] G'=\langle N,\Sigma, P', S \rangle[/math] без [math]\varepsilon[/math]-правил (возможно правило [math]S \rightarrow \varepsilon[/math], но в этом случае [math]S[/math] не встречается в правых частях правил). [math]L(G') = L(G)[/math].

  1. Найти все [math]\varepsilon[/math]-порождаюшие нетерминалы.
  2. Добавить все правила из [math]P[/math] в [math]P'[/math].
  3. Рассмотрим правила вида (*) [math]A \rightarrow \alpha_0 B_1 \alpha_1 B_2 \alpha_2 ... B_k \alpha_k[/math], где [math]\alpha_i[/math] — последовательности из терминалов и нетерминалов, [math]B_j[/math][math]\varepsilon[/math]-порождающие нетерминалы. Добавить все возможные правила вида (*) в [math]P'[/math], в которых либо присутствует, либо отсутствует [math]B_j\; (1 \le j \le k)[/math].
  4. Удалить все [math]\varepsilon[/math]-правила из [math]P'[/math].
  5. Если в исходной грамматике [math]G[/math] выводилось пустое слово [math]\varepsilon[/math], то необходимо добавить новый нетерминал [math]S'[/math], сделать его стартовым, добавить правила [math]S' \rightarrow S|\varepsilon[/math].

Доказательство корректности

Теорема:
Если грамматика [math]G'[/math] была построена с помощью описанного выше алгоритма по грамматике [math]G[/math], то [math]L(G') = L(G)[/math].
Доказательство:
[math]\triangleright[/math]

Сначала докажем, что если не выполнять шаг 5 алгоритма, то получится грамматика [math]G' : L(G') = L(G) \setminus \lbrace \varepsilon \rbrace [/math].
Для этого достаточно доказать, что [math]A \underset{G'}{\Rightarrow}^*w[/math] тогда и только тогда, когда [math]A \underset{G}{\Rightarrow}^*w[/math] и [math]w \ne \varepsilon[/math] (*).

[math]\Rightarrow)[/math]<br\> Пусть [math]A \underset{G'}{\Rightarrow}^*w[/math]  и  [math]w \ne \varepsilon[/math].
Докажем индукцией по длине порождения, что [math]A \underset{G}{\Rightarrow}^*w[/math].

Базис. Пусть [math]A \underset{G'}{\Rightarrow}^*w[/math].

В этом случае в [math]G'[/math] есть правило [math]A \rightarrow w[/math]. Согласно конструкции [math]G'[/math] в [math]G[/math] есть правило [math]A \rightarrow \alpha[/math], причем [math]\alpha[/math] — цепочка [math]w[/math], символы которой, возможно, перемежаются [math]\varepsilon[/math]-порождающими нетерминалами. Тогда в [math]G[/math] есть порождения [math]A \underset{G}{\Rightarrow} \alpha \underset{G}{\Rightarrow}w[/math].

Предположение. Пусть из [math]A \underset{G'}{\Rightarrow}^*w[/math] следует, что [math]A \underset{G}{\Rightarrow}^*w[/math] и [math]w \ne \varepsilon[/math] менее, чем за [math]n[/math] шагов.
Переход.

Пусть в порождении [math]n[/math] шагов, [math]n \gt 1[/math]. Тогда оно имеет вид [math]A\underset{G'}{\Rightarrow}X_1 X_2...X_k \underset{G'}{\Rightarrow}^*w[/math], где [math]X_i \in N \cup \Sigma [/math]. Первое использованное правило должно быть построено по правилу [math]A \rightarrow Y_1 Y_2...Y_m[/math], где цепочка [math]Y_1 Y_2...Y_m[/math] совпадает с цепочкой [math]X_1 X_2...X_k[/math], цепочка [math]Y_1 Y_2...Y_m[/math], возможно, перемежаются [math]\varepsilon[/math]-порождающими нетерминалами.
Цепочку [math]w[/math] можно разбить на [math]w_1 w_2...w_k[/math], где [math]X_i \underset{G'}{\Rightarrow}^*w_i[/math]. Если [math]X_i[/math] — терминал, то [math]w_i = X_i[/math], a если нетерминал, то порождение [math]X_i \underset{G'}{\Rightarrow}^*w_i[/math] содержит менее [math]n[/math] шагов.
По предположению [math]X_i \underset{G}{\Rightarrow}^*w_i[/math].
Теперь построим соответствующее порождение в [math]G[/math].

[math]A \underset {G}{\Rightarrow} Y_1 Y_2...Y_m \underset{G}{\Rightarrow}^* X_1 X_2...X_k \underset{G}{\Rightarrow}^* w_1 w_2...w_k = w[/math]

Ч.т.д.
[math]\Leftarrow)[/math]
Пусть [math]A \underset{G}{\Rightarrow}^*w[/math]  и  [math]w \ne \varepsilon[/math].
Докажем индукцией по длине порождения, что [math]A \underset{G'}{\Rightarrow}^*w[/math].
Обозначим длину порождения за [math]p[/math].

Базис. Пусть [math]A \underset{G}{\Rightarrow}^*w[/math].

[math]A \rightarrow w[/math] является правилом в [math]G[/math]. Поскольку [math]w \ne \varepsilon[/math], это же правило будет и в [math]G'[/math], поэтому [math]A \underset{G'}{\Rightarrow}^*w[/math].

Предположение. Пусть из [math]A \underset{G}{\Rightarrow}^*w[/math] и [math]w \ne \varepsilon[/math] следует, что [math]A \underset{G'}{\Rightarrow}^*w [/math] менее, чем за [math]n[/math] шагов.
Переход.

Пусть в порождении [math]n[/math] шагов, [math]n \gt 1[/math]. Тогда оно имеет вид [math]A\underset{G}{\Rightarrow}Y_1 Y_2...Y_m \underset{G}{\Rightarrow}^*w[/math], где [math]Y_i \in N \cup \Sigma [/math]. Цепочку [math]w[/math] можно разбить на [math]w_1 w_2...w_m[/math], где [math]Y_i \underset{G'}{\Rightarrow}^*w_i[/math].
Пусть [math]X_1, X_2, ... X_k[/math] будут теми из [math]Y_j[/math] (в порядке записи), для которых [math]w_i \ne \varepsilon[/math]. [math]k \ge 1[/math], поскольку [math]w \ne \varepsilon[/math].
Таким образом [math]A \rightarrow X_1 X_2 ... X_k[/math] является правилом в [math]G'[/math] по построению [math]G'[/math]. Утверждаем, что [math] X_1 X_2...X_k \underset{G}{\Rightarrow}^*w[/math], поскольку только [math]Y_j[/math], которых нет среди [math]X_1, X_2, ... X_k[/math], использованы для порождения [math]\varepsilon[/math] и не вносят ничего в порождение [math]w[/math]. Так как каждое из порождений [math]Y_j \underset{G}{\Rightarrow}^*w_j[/math] содержит менее [math]n[/math] шагов, к ним можно применить предположение индукции и заключить, что если [math]w_j \ne \varepsilon[/math], то [math]Y_j \underset{G'}{\Rightarrow}^*w_j[/math].
Таким образом [math]A \underset{G'}{\rightarrow} X_1 X_2 ... X_k \underset{G'}{\Rightarrow}^* w[/math].
Ч.т.д.

Подставив [math]S[/math] вместо [math]A[/math] в утверждение (*), видим, что [math]w \in L(G)[/math] для [math]w \ne \varepsilon[/math] тогда и только тогда, когда [math]w \in L(G')[/math]. Так как после выполнения шага 5 алгоритма в [math]G'[/math] могло добавиться только пустое слово [math]\varepsilon[/math], то язык, задаваемый КС грамматикой [math]G'[/math], совпадает с языком, задаваемым КС грамматикой [math]G[/math].
[math]\triangleleft[/math]

Алгоритм поиска ε-порождающих нетерминалов

Вход: КС грамматика [math] G=\langle N,\Sigma, P, S \rangle[/math].
Выход: множество [math]\varepsilon[/math]-порождающих нетерминалов.

  1. Пусть [math]N_{\varepsilon}[/math] — множество [math]\varepsilon[/math]-порождающих нетерминалов. Добавить все нетерминалы, из которых непосредственно можно вывести [math]\varepsilon[/math], в множество [math]N_{\varepsilon}[/math].
  2. Если найдено правило [math]A \rightarrow C_1C_2...C_k[/math], для которого верно, что каждый [math]C_i[/math][math]\varepsilon[/math]-порождающий нетерминал, то добавить [math]A[/math] в множество [math]N_{\varepsilon}[/math].
  3. Если на шаге 2 множество [math]N_{\varepsilon}[/math] изменилось, то повторить шаг 2.


Теорема:
Нетерминал [math]A[/math] является [math]\varepsilon[/math]-порождающим тогда и только тогда, если выполнено одно из следующих условий:
  1. в грамматике [math]G[/math] есть правило [math]A \rightarrow \varepsilon[/math];
  2. в грамматике [math]G[/math] есть правило [math]A \rightarrow C_1C_2...C_k[/math], где каждый [math]C_i[/math][math]\varepsilon[/math]-порождающий нетерминал.
Доказательство:
[math]\triangleright[/math]

Индукция по длине кратчайшего порождения [math]A \Rightarrow^* \varepsilon[/math].

База. [math]A \Rightarrow \varepsilon[/math], то есть в грамматике имеется правило [math]A \rightarrow\varepsilon[/math]. Следовательно, [math]A[/math][math]\varepsilon[/math]-порождающий нетерминал.

Переход. Пусть [math]A \Rightarrow^* \varepsilon[/math] за [math]n[/math] шагов. Тогда первый шаг порождения [math]A \rightarrow C_1C_2...C_k[/math], где [math]C_i \Rightarrow^* \varepsilon[/math] за менее, чем [math]n[/math] шагов. По индукционному предположению каждый нетерминал [math]C_i[/math] обнаруживается как [math]\varepsilon[/math]-порождающий. Тогда нетерминал [math]A[/math][math]\varepsilon[/math]-порождающий.
[math]\triangleleft[/math]


Литература

  • Хопкрофт Д., Мотвани Р., Ульман Д. Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — С. 273: ISBN 5-8459-0261-4 (рус.)