Удаление eps-правил из грамматики — различия между версиями
(→Алгоритм поиска ε-порождающих нетерминалов) |
(→Алгоритм поиска ε-порождающих нетерминалов) |
||
Строка 61: | Строка 61: | ||
# Найти все <tex>\varepsilon</tex>-правила. Составить множество, состоящее из нетерминалов, входящих в левые части таких правил. | # Найти все <tex>\varepsilon</tex>-правила. Составить множество, состоящее из нетерминалов, входящих в левые части таких правил. | ||
− | # Если | + | # Если существует правило <tex>A \rightarrow C_1C_2...C_k</tex>, для которого верно, что каждый <tex>C_i</tex> принадлежит множеству, то добавить <tex>A</tex> в множество. |
# Если на шаге 2 множество изменилось, то повторить шаг 2. | # Если на шаге 2 множество изменилось, то повторить шаг 2. | ||
Версия 05:51, 6 декабря 2011
Содержание
Используемые определения
Определение: |
Правила вида | называются -правилами.
Определение: |
Нетерминал | называется -порождающим, если .
Алгоритм удаления ε-правил из грамматики
Вход: КС грамматика
Выход: КС грамматика без -правил (возможно правило , но в этом случае не встречается в правых частях правил). .
- Найти все . -порождаюшие нетерминалы
- Добавить все правила из в .
- Рассмотрим правила вида (*) , где — последовательности из терминалов и нетерминалов, — -порождающие нетерминалы. Добавить все возможные правила вида (*) в , в которых либо присутствует, либо отсутствует .
- Удалить все -правила из .
- Если в исходной грамматике выводилось пустое слово , то необходимо добавить новый нетерминал , сделать его стартовым, добавить правила .
Доказательство корректности
Теорема: |
Если грамматика была построена с помощью описанного выше алгоритма по грамматике , то . |
Доказательство: |
Сначала докажем, что если не выполнять шаг 5 алгоритма, то получится грамматика
В этом случае в
Пусть в порождении Ч.т.д.
является правилом в . Поскольку , это же правило будет и в , поэтому .
Пусть в порождении |
Алгоритм поиска ε-порождающих нетерминалов
Вход: КС грамматика
Выход: множество -порождающих нетерминалов.
- Найти все -правила. Составить множество, состоящее из нетерминалов, входящих в левые части таких правил.
- Если существует правило , для которого верно, что каждый принадлежит множеству, то добавить в множество.
- Если на шаге 2 множество изменилось, то повторить шаг 2.
Теорема: |
Описанный выше алгоритм находит все -порождающие нетерминалы грамматики . |
Доказательство: |
Индукция по длине кратчайшего порождения .База. Переход. Пусть , то есть в грамматике имеется правило . Следовательно, — -порождающий нетерминал. за шагов. Тогда первый шаг порождения , где за менее, чем шагов. По индукционному предположению каждый нетерминал обнаруживается как -порождающий. Тогда нетерминал — -порождающий. |
Литература
- Хопкрофт Д., Мотвани Р., Ульман Д. Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — С. 273: ISBN 5-8459-0261-4 (рус.)