Удаление eps-правил из грамматики — различия между версиями
Kirelagin (обсуждение | вклад) м (→Алгоритм удаления ε-правил из грамматики) |
Kirelagin (обсуждение | вклад) (→Алгоритм удаления ε-правил из грамматики) |
||
Строка 9: | Строка 9: | ||
== Алгоритм удаления ε-правил из грамматики == | == Алгоритм удаления ε-правил из грамматики == | ||
'''Вход:''' КС грамматика <tex> G=\langle N,\Sigma, P, S \rangle</tex>.<br/> | '''Вход:''' КС грамматика <tex> G=\langle N,\Sigma, P, S \rangle</tex>.<br/> | ||
− | '''Выход:''' КС грамматика <tex> G'=\langle N,\Sigma, P', S \rangle</tex> без <tex>\varepsilon</tex>-правил (может присутствовать правило <tex>S \rightarrow \varepsilon</tex>, но в этом случае <tex>S</tex> не встречается в правых частях правил). <tex>L(G') = L(G)</tex>. | + | '''Выход:''' КС грамматика <tex> G'=\langle N,\Sigma, P', S' \rangle</tex> без <tex>\varepsilon</tex>-правил (может присутствовать правило <tex>S \rightarrow \varepsilon</tex>, но в этом случае <tex>S</tex> не встречается в правых частях правил). <tex>L(G') = L(G)</tex>. |
# Добавить все правила из <tex>P</tex> в <tex>P'</tex>. | # Добавить все правила из <tex>P</tex> в <tex>P'</tex>. | ||
Строка 15: | Строка 15: | ||
# Рассмотрим правила вида (*) <tex>A \rightarrow \alpha_0 B_1 \alpha_1 B_2 \alpha_2 ... B_k \alpha_k</tex>, где <tex>\alpha_i</tex> — последовательности из терминалов и нетерминалов, <tex>B_j</tex> — <tex>\varepsilon</tex>-порождающие нетерминалы. Добавить все возможные правила вида (*) в <tex>P'</tex>, в которых либо присутствует, либо отсутствует <tex>B_j\; (1 \le j \le k)</tex>. | # Рассмотрим правила вида (*) <tex>A \rightarrow \alpha_0 B_1 \alpha_1 B_2 \alpha_2 ... B_k \alpha_k</tex>, где <tex>\alpha_i</tex> — последовательности из терминалов и нетерминалов, <tex>B_j</tex> — <tex>\varepsilon</tex>-порождающие нетерминалы. Добавить все возможные правила вида (*) в <tex>P'</tex>, в которых либо присутствует, либо отсутствует <tex>B_j\; (1 \le j \le k)</tex>. | ||
# Удалить все <tex>\varepsilon</tex>-правила из <tex>P'</tex>. | # Удалить все <tex>\varepsilon</tex>-правила из <tex>P'</tex>. | ||
− | # Если в исходной грамматике <tex>G</tex> выводилось | + | # Если в исходной грамматике <tex>G</tex> выводилось <tex>\varepsilon</tex>, то необходимо добавить новый нетерминал <tex>S'</tex>, сделать его стартовым, добавить правила <tex>S' \rightarrow S|\varepsilon</tex>. |
=== Доказательство корректности === | === Доказательство корректности === | ||
Строка 29: | Строка 29: | ||
Докажем индукцией по длине порождения в грамматике <tex>G'</tex>, что <tex>A \underset{G}{\Rightarrow}^*w</tex>.<br/> | Докажем индукцией по длине порождения в грамматике <tex>G'</tex>, что <tex>A \underset{G}{\Rightarrow}^*w</tex>.<br/> | ||
'''База'''. <tex>A \underset{G'}{\Rightarrow} w</tex>.<br/> | '''База'''. <tex>A \underset{G'}{\Rightarrow} w</tex>.<br/> | ||
− | В этом случае в <tex>G'</tex> есть правило <tex>A \rightarrow w</tex>. По построению <tex>G'</tex> в <tex>G</tex> есть правило <tex>A \rightarrow \alpha</tex>, причем <tex>\alpha</tex> — цепочка <tex>w</tex>, | + | В этом случае в <tex>G'</tex> есть правило <tex>A \rightarrow w</tex>. По построению <tex>G'</tex> в <tex>G</tex> есть правило <tex>A \rightarrow \alpha</tex>, причем <tex>\alpha</tex> — цепочка <tex>w</tex>, элементы которой, возможно, перемежаются <tex>\varepsilon</tex>-порождающими нетерминалами. Тогда в <tex>G</tex> есть порождения <tex>A \underset{G}{\Rightarrow} \alpha \underset{G}{\Rightarrow}^*w</tex>.<br/> |
'''Предположение'''. Пусть из <tex>A \underset{G'}{\Rightarrow}^*w \ne \varepsilon</tex> менее, чем за <tex>n</tex> шагов, следует, что <tex>A \underset{G}{\Rightarrow}^*w</tex>.<br/> | '''Предположение'''. Пусть из <tex>A \underset{G'}{\Rightarrow}^*w \ne \varepsilon</tex> менее, чем за <tex>n</tex> шагов, следует, что <tex>A \underset{G}{\Rightarrow}^*w</tex>.<br/> | ||
'''Переход'''. | '''Переход'''. | ||
Пусть в порождении <tex>n</tex> шагов, <tex>n > 1</tex>. Тогда оно имеет вид <tex>A\underset{G'}{\Rightarrow}X_1 X_2...X_k \underset{G'}{\Rightarrow}^*w</tex>, где <tex>X_i \in N \cup \Sigma </tex>. Первое использованное правило должно быть построено по правилу грамматики <tex>G</tex> <tex>A \rightarrow Y_1 Y_2...Y_m</tex>, где последовательность <tex>Y_1 Y_2...Y_m</tex> совпадает с последовательностью <tex>X_1 X_2...X_k</tex>, символы которой, возможно, перемежаются <tex>\varepsilon</tex>-порождающими нетерминалами.<br/> | Пусть в порождении <tex>n</tex> шагов, <tex>n > 1</tex>. Тогда оно имеет вид <tex>A\underset{G'}{\Rightarrow}X_1 X_2...X_k \underset{G'}{\Rightarrow}^*w</tex>, где <tex>X_i \in N \cup \Sigma </tex>. Первое использованное правило должно быть построено по правилу грамматики <tex>G</tex> <tex>A \rightarrow Y_1 Y_2...Y_m</tex>, где последовательность <tex>Y_1 Y_2...Y_m</tex> совпадает с последовательностью <tex>X_1 X_2...X_k</tex>, символы которой, возможно, перемежаются <tex>\varepsilon</tex>-порождающими нетерминалами.<br/> | ||
− | Цепочку <tex>w</tex> можно разбить на <tex>w_1 w_2...w_k</tex>, где <tex>X_i \underset{G'}{\Rightarrow}^*w_i</tex>. Если <tex>X_i</tex> — терминал, то <tex>w_i = X_i</tex>, a если нетерминал, то порождение <tex>X_i \underset{G'}{\Rightarrow}^*w_i</tex> содержит менее <tex>n</tex> шагов. | + | Цепочку <tex>w</tex> можно разбить на <tex>w_1 w_2...w_k</tex>, где <tex>X_i \underset{G'}{\Rightarrow}^*w_i</tex>. Если <tex>X_i</tex> — терминал, то <tex>w_i = X_i</tex>, a если нетерминал, то порождение <tex>X_i \underset{G'}{\Rightarrow}^*w_i</tex> содержит менее <tex>n</tex> шагов. По предположению <tex>X_i \underset{G}{\Rightarrow}^*w_i</tex>, значит <tex>A \underset {G}{\Rightarrow} Y_1 Y_2...Y_m \underset{G}{\Rightarrow}^* X_1 X_2...X_k \underset{G}{\Rightarrow}^* w_1 w_2...w_k = w</tex>. |
− | + | ||
− | |||
− | |||
<tex>\Leftarrow)</tex><br/> | <tex>\Leftarrow)</tex><br/> | ||
Пусть <tex>A \underset{G}{\Rightarrow}^*w</tex> и <tex>w \ne \varepsilon</tex>.<br/> | Пусть <tex>A \underset{G}{\Rightarrow}^*w</tex> и <tex>w \ne \varepsilon</tex>.<br/> | ||
Строка 42: | Строка 40: | ||
'''База'''. <tex>A \underset{G}{\Rightarrow} w</tex>.<br/> | '''База'''. <tex>A \underset{G}{\Rightarrow} w</tex>.<br/> | ||
Правило <tex>A \rightarrow w</tex> присутствует в <tex>G</tex>. Поскольку <tex>w \ne \varepsilon</tex>, это же правило будет и в <tex>G'</tex>, поэтому <tex>A \underset{G'}{\Rightarrow}^*w</tex>.<br/> | Правило <tex>A \rightarrow w</tex> присутствует в <tex>G</tex>. Поскольку <tex>w \ne \varepsilon</tex>, это же правило будет и в <tex>G'</tex>, поэтому <tex>A \underset{G'}{\Rightarrow}^*w</tex>.<br/> | ||
− | '''Предположение'''. Пусть из <tex>A \underset{G}{\Rightarrow}^* | + | '''Предположение'''. Пусть из <tex>A \underset{G}{\Rightarrow}^*w \ne \varepsilon</tex> менее, чем за <tex>n</tex> шагов, следует, что <tex>A \underset{G'}{\Rightarrow}^*w </tex>.<br/> |
− | '''Переход'''. Пусть в порождении <tex>n</tex> шагов, <tex>n > 1</tex>. Тогда оно имеет вид <tex>A\underset{G}{\Rightarrow}Y_1 Y_2...Y_m \underset{G}{\Rightarrow}^*w</tex>, где <tex>Y_i \in N \cup \Sigma </tex>. Цепочку <tex>w</tex> можно разбить на <tex>w_1 w_2...w_m</tex>, где <tex>Y_i \underset{G | + | '''Переход'''. Пусть в порождении <tex>n</tex> шагов, <tex>n > 1</tex>. Тогда оно имеет вид <tex>A\underset{G}{\Rightarrow}Y_1 Y_2...Y_m \underset{G}{\Rightarrow}^*w</tex>, где <tex>Y_i \in N \cup \Sigma </tex>. Цепочку <tex>w</tex> можно разбить на <tex>w_1 w_2...w_m</tex>, где <tex>Y_i \underset{G}{\Rightarrow}^*w_i</tex>.<br/> |
− | Пусть <tex> | + | Пусть <tex>Y_{i_1}, Y_{i_2}, ..., Y_{i_p}</tex> — подпоследовательность, состоящая из всех элементов, таких, что <tex>w_{i_k} \ne \varepsilon</tex>, то есть <tex>Y_{i_1} Y_{i_2} ... Y_{i_p} \underset{G}{\Rightarrow}^*w</tex>. <tex>p \ge 1</tex>, поскольку <tex>w \ne \varepsilon</tex>. Таким образом, <tex>A \rightarrow Y_{i_1}, Y_{i_2}, ..., Y_{i_p}</tex> является правилом в <tex>G'</tex> по построению <tex>G'</tex>.<br/> |
− | + | Так как каждое из порождений <tex>Y_i \underset{G}{\Rightarrow}^*w_i</tex> содержит менее <tex>n</tex> шагов, к ним можно применить предположение индукции и заключить, что, если <tex>w_i \ne \varepsilon</tex>, то <tex>Y_i \underset{G'}{\Rightarrow}^*w_i</tex>.<br/> | |
− | Так как каждое из порождений <tex> | + | Таким образом, <tex>A \underset{G'}{\Rightarrow} X_1 X_2 ... X_k \underset{G'}{\Rightarrow}^* w</tex>. |
− | Таким образом <tex>A \underset{G'}{\ | ||
− | |||
Подставив <tex>S</tex> вместо <tex>A</tex> в утверждение (*), видим, что <tex>w \in L(G)</tex> для <tex>w \ne \varepsilon</tex> тогда и только тогда, когда <tex>w \in L(G')</tex>. Так как после выполнения шага 5 алгоритма в <tex>G'</tex> могло добавиться только пустое слово <tex>\varepsilon</tex>, то язык, задаваемый КС грамматикой <tex>G'</tex>, совпадает с языком, задаваемым КС грамматикой <tex>G</tex>. | Подставив <tex>S</tex> вместо <tex>A</tex> в утверждение (*), видим, что <tex>w \in L(G)</tex> для <tex>w \ne \varepsilon</tex> тогда и только тогда, когда <tex>w \in L(G')</tex>. Так как после выполнения шага 5 алгоритма в <tex>G'</tex> могло добавиться только пустое слово <tex>\varepsilon</tex>, то язык, задаваемый КС грамматикой <tex>G'</tex>, совпадает с языком, задаваемым КС грамматикой <tex>G</tex>. |
Версия 00:03, 12 декабря 2011
Содержание
Используемые определения
Определение: |
Правила вида | называются -правилами.
Определение: |
Нетерминал | называется -порождающим, если .
Алгоритм удаления ε-правил из грамматики
Вход: КС грамматика
Выход: КС грамматика без -правил (может присутствовать правило , но в этом случае не встречается в правых частях правил). .
- Добавить все правила из в .
- Найти все . -порождаюшие нетерминалы
- Рассмотрим правила вида (*) , где — последовательности из терминалов и нетерминалов, — -порождающие нетерминалы. Добавить все возможные правила вида (*) в , в которых либо присутствует, либо отсутствует .
- Удалить все -правила из .
- Если в исходной грамматике выводилось , то необходимо добавить новый нетерминал , сделать его стартовым, добавить правила .
Доказательство корректности
Теорема: |
Если грамматика была построена с помощью описанного выше алгоритма по грамматике , то . |
Доказательство: |
Сначала докажем, что, если не выполнять шаг 5 алгоритма, то получится грамматика
|
Алгоритм поиска ε-порождающих нетерминалов
Вход: КС грамматика
Выход: множество -порождающих нетерминалов.
- Найти все -правила. Составить множество, состоящее из нетерминалов, входящих в левые части таких правил.
- Перебираем правила грамматики . Если найдено правило , для которого верно, что каждый принадлежит множеству, то добавить в множество.
- Если на шаге 2 множество изменилось, то повторить шаг 2.
Теорема: |
Описанный выше алгоритм находит все -порождающие нетерминалы грамматики . |
Доказательство: |
Для доказательства корректности алгоритма достаточно показать, что если множество |
Литература
- Хопкрофт Д., Мотвани Р., Ульман Д. Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — С. 273: ISBN 5-8459-0261-4 (рус.)