Отношение связности, компоненты связности — различия между версиями
(→Случай неориентированного графа) |
(→Сильная связность) |
||
Строка 44: | Строка 44: | ||
=== Сильная связность === | === Сильная связность === | ||
{{Определение | {{Определение | ||
+ | |id=sc_def | ||
|definition= | |definition= | ||
Отношение <tex>R(v, u) = v \rightsquigarrow u \land u \rightsquigarrow v</tex> на вершинах графа называется отношением '''сильной связности'''. | Отношение <tex>R(v, u) = v \rightsquigarrow u \land u \rightsquigarrow v</tex> на вершинах графа называется отношением '''сильной связности'''. |
Версия 19:34, 13 декабря 2011
Содержание
Случай неориентированного графа
Определение: |
Две вершины путь из в (обозначение: ). | и называются связными, если в графе существует
Теорема: |
Связность - отношение эквивалентности. |
Доказательство: |
Рефлексивность: (очевидно).Симметричность: Транзитивность: (в силу неориентированности графа). . Действительно, сначала пройдем от до , затем от до , что и означает существования пути . |
Определение: |
Компонентой связности называется класс эквивалентности относительно связности. |
Определение: |
Граф | называется связным, если он состоит из одной компоненты связности. В противном случае граф называется несвязным.
Случай ориентированного графа
В общем случае для ориентированного графа существование пути — не симметричное отношение, поэтому вместо понятия связности различают понятие слабой и сильной связности.
Слабая связность
<wikitex>
Определение: |
Отношение $R(v, u)$ называется отношением слабой связности, если вершины $u$ и $v$ связаны в неориентированном графе $G'$, полученном из графа $G$ удалением с ребер ориентации. |
Теорема: |
Слабая связность является отношением эквивалентности. |
Доказательство: |
Аналогично доказательству соответствующей теоремы для неориентированного графа. |
</wikitex>
Сильная связность
Определение: |
Отношение | на вершинах графа называется отношением сильной связности.
Теорема: |
Сильная связность - отношение эквивалентности. |
Доказательство: |
Рефлексивность и симметричность очевидны. Рассмотрим транзитивность: |
Определение: |
Пусть | — ориентированный граф. Компонентой сильной связности называется класс эквивалентности множества вершин этого графа относительно сильной связности.
Определение: |
Ориентированный граф | называется сильно связным, если он состоит из одной компоненты сильной связности.
Источники
- ivtb.ru
- Харари Фрэнк Теория графов: Пер. с англ./ Предисл. В. П. Козырева; Под ред. Г.П.Гаврилова. Изд. 4-е. — М.: Книжный дом "ЛИБРОКОМ", 2009. — 296 с. — ISBN 978-5-397-00622-4.