Разрешимые (рекурсивные) языки — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 10: Строка 10:
 
Язык чётных чисел разрешим.
 
Язык чётных чисел разрешим.
 
|proof=
 
|proof=
Приведём программу, разрешающую наш язык:
+
Приведём программу, разрешающую язык чётных чисел:
 
  <tex>p(i)</tex>
 
  <tex>p(i)</tex>
 
  '''if''' остаток от деления i на 2 = 0
 
  '''if''' остаток от деления i на 2 = 0

Версия 07:09, 14 декабря 2011

Определение:
Язык [math]L[/math] называется разрешимым (рекурсивным), если существует такая программа [math] p [/math], что [math] \forall w \in L: p(w) = 1[/math], а для [math] \forall w \notin L: p(w) = 0[/math].


Примеры

Пример разрешимого множества

Утверждение:
Язык чётных чисел разрешим.
[math]\triangleright[/math]

Приведём программу, разрешающую язык чётных чисел:

[math]p(i)[/math]
if остаток от деления i на 2 = 0
  return 1
else
  return 0
Заметим, что программа нигде не может зависнуть.
[math]\triangleleft[/math]

Пример неразрешимого множества

Определение:
Язык [math] U = \{\langle p, x \rangle \ |\ p(x) = 1\} [/math] называется универсальным.


Утверждение:
Универсальный язык неразрешим.
[math]\triangleright[/math]

Доказательство от противного.
Пусть язык [math] U [/math] разрешим.
Тогда существует такая программа [math] u [/math], что [math] \forall \langle p, x \rangle \in U: u(\langle p, x \rangle) = 1[/math], а для [math] \forall \langle p, x \rangle \notin U: u(\langle p, x \rangle) = 0[/math].
Составим следующую программу:

[math]r(x)[/math]
if u(<x, x>) = 1
  while true
else
  return 1

Теперь рассмотрим вызов [math] r(r) [/math].

  • Если [math] u(\langle r, r \rangle) = 1 [/math], то условие if выполнится и вызов зациклится. Но, [math] u(\langle r, r \rangle) = 1 \Rightarrow r(r) = 1[/math].
  • Если [math] u(\langle r, r \rangle) = 0 [/math], то условие if не выполнится и вызов вернёт [math]1[/math]. Но, [math] u(\langle r, r \rangle) = 0 \Rightarrow r(r) \ne 1[/math].
Таким образом, из предположения о разрешимости универсального языка мы пришли к противоречию.
[math]\triangleleft[/math]