Эргодическая марковская цепь — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 10: Строка 10:
  
 
Такая матрица является стохастической, а, значит, корректно определяет марковскую цепь. Такая цепь является эргодической, так как существует эргодическое распределение <tex>\pi = (0.5,0.5)^{\top}</tex>, такое что <tex>\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j, i=1,2</tex>.
 
Такая матрица является стохастической, а, значит, корректно определяет марковскую цепь. Такая цепь является эргодической, так как существует эргодическое распределение <tex>\pi = (0.5,0.5)^{\top}</tex>, такое что <tex>\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j, i=1,2</tex>.
 +
 
==См. также==
 
==См. также==
[http://ru.wikipedia.org/wiki/%D0%AD%D1%80%D0%B3%D0%BE%D0%B4%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5 Википедия: эргодическое распределение]
+
* [http://neerc.ifmo.ru/mediawiki/index.php/Марковская_цепь Марковская цепь]
 +
 
 +
* [http://neerc.ifmo.ru/mediawiki/index.php/Регулярная_марковская_цепь Регулярная марковская цепь]
 +
 
 +
==Ссылки==
 +
*[http://ru.wikipedia.org/wiki/Эргодическое_распределение Эргодическое распределение - Википедия]
  
[http://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D0%BA%D1%80%D0%B5%D1%82%D0%BD%D0%BE%D0%B5_%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5#.D0.94.D0.B8.D1.81.D0.BA.D1.80.D0.B5.D1.82.D0.BD.D1.8B.D0.B5_.D1.80.D0.B0.D1.81.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F Википедия: дискретное распределение]
+
*[http://ru.wikipedia.org/wiki/Дискретное_распределение#.D0.94.D0.B8.D1.81.D0.BA.D1.80.D0.B5.D1.82.D0.BD.D1.8B.D0.B5_.D1.80.D0.B0.D1.81.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F Дискретное распределение - Википедия]
  
 
==Литература==
 
==Литература==
 
Дж. Кемени, Дж. Снелл "Конечные цепи Маркова"
 
Дж. Кемени, Дж. Снелл "Конечные цепи Маркова"
 +
 +
[[Категория: Марковские цепи]]

Версия 08:18, 15 декабря 2011

Определение:
Марковская цепь называется эргодической, если существует дискретное распределение (называемое эргодическим) [math]\pi = (\pi_1,\pi_2,\ldots )^{\top}[/math], такое что [math]\pi_i \gt 0,\; i \in \mathbb{N}[/math] и
[math]\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j, \quad \forall i=1,2, \ldots[/math].


Пример

Пример эргодической цепи

Рассмотрим эксперимент по бросанию честной монеты. Тогда соответствующая этому эксперименту марковская цепь будет иметь 2 состояния. Рассмотрим матрицу, следующего вида: [math]p_{ij}=0.5, i,j=1,2[/math].

Такая матрица является стохастической, а, значит, корректно определяет марковскую цепь. Такая цепь является эргодической, так как существует эргодическое распределение [math]\pi = (0.5,0.5)^{\top}[/math], такое что [math]\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j, i=1,2[/math].

См. также

Ссылки

Литература

Дж. Кемени, Дж. Снелл "Конечные цепи Маркова"