Независимые случайные величины — различия между версиями
м (→Определение) |
Nechaev (обсуждение | вклад) м (→Дискретные случайные величины) |
||
Строка 11: | Строка 11: | ||
{{Определение | {{Определение | ||
|id=def2 | |id=def2 | ||
− | |definition=Случайные величины <tex>\xi_1,...,\xi_n</tex> с дискретным распределением независимы (в совокупности), если для <tex>\forall a_1,...,a_n</tex> имеет место равенство:<br><tex>P(\xi_1=a_1,...,\xi_n=a_n)=P(\xi_1=a_1)·...·P(\xi_n=a_n)</tex> | + | |definition=Случайные величины <tex>\xi_1,...,\xi_n</tex> с дискретным распределением<ref>Вероятность того, что случайная величина <tex>X</tex> принимает значение меньшее <tex>x</tex>, называется функцией распределения случайной величины <tex>X</tex> и обозначается<br><tex>F(x): F(x) = P</tex><tex>(X \leqslant x)</tex>.</ref> независимы (в совокупности), если для <tex>\forall a_1,...,a_n</tex> имеет место равенство:<br><tex>P(\xi_1=a_1,...,\xi_n=a_n)=P(\xi_1=a_1)·...·P(\xi_n=a_n)</tex> |
}} | }} | ||
Стоит отметить, что если <tex>\xi</tex> и <tex>\eta</tex> - дискретные случайные величины, то достаточно рассматривать случай <tex>\xi = \alpha</tex>, <tex>\eta = \beta</tex>. | Стоит отметить, что если <tex>\xi</tex> и <tex>\eta</tex> - дискретные случайные величины, то достаточно рассматривать случай <tex>\xi = \alpha</tex>, <tex>\eta = \beta</tex>. |
Версия 14:49, 18 декабря 2011
Эта статья находится в разработке!
Содержание
Определение
Определение: |
Независимые случайные величины - | и называются независимыми, если события и независимы.
Иначе говоря, две случайные величины называются независимыми, если значение одной из них не влияет на значение другой.
Дискретные случайные величины
Определение: |
Случайные величины [1] независимы (в совокупности), если для имеет место равенство: | с дискретным распределением
Стоит отметить, что если
и - дискретные случайные величины, то достаточно рассматривать случай , .Примеры
Честная игральная кость
Рассмотрим вероятностное пространство честная игральная кость
. и - случайные величины. , .
Для того, чтобы показать, что они независимы, надо рассмотреть все
и .Для примера рассмотрим:
, .Тогда, , .
Аналогичным образом можно проверить, что для оставшихся значений
и события также являются независимыми, а это значит, что случайные величины и независимы.Тетраедер
. и - случайные величины. ,
Рассмотрим случай:
, ., и
Для этих значений события являются независимыми, как и для других значений
и (рассматривается аналогично), поэтому эти случайные величины независимы.Заметим, что если:
,
То эти величины зависимы, т.к.
, и в этом случае, мы можем однозначно определить значениеСм. также
Литература и источники информации
Независимость случайных величин
Википедия: Независимость (теория вероятностей)- ↑ Вероятность того, что случайная величина
. принимает значение меньшее , называется функцией распределения случайной величины и обозначается