Эргодическая марковская цепь — различия между версиями
Whiplash (обсуждение | вклад) |
Whiplash (обсуждение | вклад) |
||
Строка 15: | Строка 15: | ||
|statement= | |statement= | ||
Пусть <tex>\{X_n\}_{n \ge 0}</tex> - цепь Маркова с дискретным пространством состояний и матрицей переходных вероятностей <tex>P = (p_{ij}),\; i,j=1,2,\ldots</tex>. Тогда эта цепь является эргодической тогда и только тогда, когда она | Пусть <tex>\{X_n\}_{n \ge 0}</tex> - цепь Маркова с дискретным пространством состояний и матрицей переходных вероятностей <tex>P = (p_{ij}),\; i,j=1,2,\ldots</tex>. Тогда эта цепь является эргодической тогда и только тогда, когда она | ||
− | # Неразложима | + | # [[Достижимое состояние|Неразложима]]; |
# Положительно возвратна <tex>(</tex>Возвратное состояние <math>i</math> называется положительным, если <tex> \mathbb{E}[T_i] = \sum\limits_{n=1}^{\infty} n f^{(n)}_{ii} < \infty)</tex>; | # Положительно возвратна <tex>(</tex>Возвратное состояние <math>i</math> называется положительным, если <tex> \mathbb{E}[T_i] = \sum\limits_{n=1}^{\infty} n f^{(n)}_{ii} < \infty)</tex>; | ||
# Апериодична <tex>(</tex>Если <tex>d(j) = 1</tex> (где <tex>d(j) = \gcd \left(n \in \mathbb{N} \mid p_{jj}^{(n)} > 0 \right)</tex>), то состояние <tex>j</tex> называется апериодическим<tex>)</tex>. | # Апериодична <tex>(</tex>Если <tex>d(j) = 1</tex> (где <tex>d(j) = \gcd \left(n \in \mathbb{N} \mid p_{jj}^{(n)} > 0 \right)</tex>), то состояние <tex>j</tex> называется апериодическим<tex>)</tex>. |
Версия 10:17, 22 декабря 2011
Определение: |
Марковская цепь называется эргодической, если существует дискретное распределение (называемое эргодическим) , такое что и
|
Содержание
Основная теорема об эргодических распределениях
Теорема (Основная теорема об эргодических распределениях): |
Пусть - цепь Маркова с дискретным пространством состояний и матрицей переходных вероятностей . Тогда эта цепь является эргодической тогда и только тогда, когда она
Эргодическое распределение тогда является единственным решением системы:
|
Пример
Рассмотрим эксперимент по бросанию честной монеты. Тогда соответствующая этому эксперименту марковская цепь будет иметь 2 состояния. Рассмотрим матрицу, следующего вида:
.Такая матрица является стохастической, а, значит, корректно определяет марковскую цепь. Такая цепь является эргодической, так как существует эргодическое распределение
, такое что .См. также
Ссылки
Литература
Дж. Кемени, Дж. Снелл "Конечные цепи Маркова"