Эргодическая марковская цепь — различия между версиями
Whiplash (обсуждение | вклад) |
Whiplash (обсуждение | вклад) |
||
Строка 16: | Строка 16: | ||
Пусть <tex>\{X_n\}_{n \ge 0}</tex> - цепь Маркова с дискретным пространством состояний и матрицей переходных вероятностей <tex>P = (p_{ij}),\; i,j=1,2,\ldots</tex>. Тогда эта цепь является эргодической тогда и только тогда, когда она | Пусть <tex>\{X_n\}_{n \ge 0}</tex> - цепь Маркова с дискретным пространством состояний и матрицей переходных вероятностей <tex>P = (p_{ij}),\; i,j=1,2,\ldots</tex>. Тогда эта цепь является эргодической тогда и только тогда, когда она | ||
# [[Достижимое состояние|Неразложима]]; | # [[Достижимое состояние|Неразложима]]; | ||
− | # Положительно возвратна | + | # [[Возвратное состояние|Положительно возвратна]]; |
− | # Апериодична | + | # [[Периодическое состояние|Апериодична]]. |
Эргодическое распределение <tex>\mathbf{\pi}</tex> тогда является единственным решением системы: | Эргодическое распределение <tex>\mathbf{\pi}</tex> тогда является единственным решением системы: | ||
:<tex>\sum\limits_{i=0}^{\infty} \pi_i = 1,\; \pi_j \ge 0,\; \pi_j = \sum\limits_{i=0}^{\infty} \pi_i\, p_{ij},\quad \, j\in \mathbb{N}</tex>.}} | :<tex>\sum\limits_{i=0}^{\infty} \pi_i = 1,\; \pi_j \ge 0,\; \pi_j = \sum\limits_{i=0}^{\infty} \pi_i\, p_{ij},\quad \, j\in \mathbb{N}</tex>.}} |
Версия 10:34, 22 декабря 2011
Определение: |
Марковская цепь называется эргодической, если существует дискретное распределение (называемое эргодическим) , такое что и
|
Содержание
Основная теорема об эргодических распределениях
Теорема (Основная теорема об эргодических распределениях): |
Пусть
- цепь Маркова с дискретным пространством состояний и матрицей переходных вероятностей . Тогда эта цепь является эргодической тогда и только тогда, когда она
Эргодическое распределение тогда является единственным решением системы:
|
Пример
Рассмотрим эксперимент по бросанию честной монеты. Тогда соответствующая этому эксперименту марковская цепь будет иметь 2 состояния. Рассмотрим матрицу, следующего вида:
.Такая матрица является стохастической, а, значит, корректно определяет марковскую цепь. Такая цепь является эргодической, так как существует эргодическое распределение
, такое что .См. также
Ссылки
Литература
Дж. Кемени, Дж. Снелл "Конечные цепи Маркова"