Мера, порождённая внешней мерой — различия между версиями
Строка 6: | Строка 6: | ||
}} | }} | ||
− | Так как <tex> B = (B \cap A) \cup (B \cap \overline{A}) </tex>, то, по полуаддитивности внешней меры, <tex> \mu^*(B) \le \mu^*(B \cap A) + \mu^*(B \cap \overline{A}) </tex> всегда, поэтому, когда мы будем проверять, что одно множество хорошо разбивает другое, достаточно проверять неравенство <tex> \mu^*(B) \ge \mu^*(B \cap A) + \mu^*(B \cap \overline{A}) </tex>. Оно всегда верно, если <tex> \mu^*(B) = +\infty </tex>, поэтому далее будем проверять его только для случая <tex> \mu^*(B) | + | Так как <tex> B = (B \cap A) \cup (B \cap \overline{A}) </tex>, то, по полуаддитивности внешней меры, <tex> \mu^*(B) \le \mu^*(B \cap A) + \mu^*(B \cap \overline{A}) </tex> всегда, поэтому, когда мы будем проверять, что одно множество хорошо разбивает другое, достаточно проверять неравенство <tex> \mu^*(B) \ge \mu^*(B \cap A) + \mu^*(B \cap \overline{A}) </tex>. Оно всегда верно, если <tex> \mu^*(B) = +\infty </tex>, поэтому далее будем проверять его только для случая <tex> \mu^*(B) < +\infty </tex>. |
Выделим в <tex> X </tex> класс множеств <tex> \mathcal{A} </tex>, такой, что каждое <tex> A \in \mathcal{A} </tex> хорошо разбивает любое множество из <tex> X </tex>. | Выделим в <tex> X </tex> класс множеств <tex> \mathcal{A} </tex>, такой, что каждое <tex> A \in \mathcal{A} </tex> хорошо разбивает любое множество из <tex> X </tex>. |
Версия 17:08, 6 января 2012
Определение: |
Пусть есть множество | и внешняя мера на нем, и множества являются подмножествами . Множество хорошо разбивает множество , если .
Так как , то, по полуаддитивности внешней меры, всегда, поэтому, когда мы будем проверять, что одно множество хорошо разбивает другое, достаточно проверять неравенство . Оно всегда верно, если , поэтому далее будем проверять его только для случая .
Выделим в
класс множеств , такой, что каждое хорошо разбивает любое множество из .Теорема: |
1) — -алгебра множеств.2) — мера на . |
Доказательство: |
Доказательство разбиваем на 2 этапа. На первом этапе мы докажем, что - алгебра, а конечно-аддитивна на этой алгебре. На втором этапе — что — -алгебра, а является -аддитивной на ней.1. Сначала проверим аксиомы алгебры:
Пусть , проверим, что конечно-аддитивна.. Мы сделали проверку для двух множеств, дальше можно доказать требуемое для любого конечного числа множеств по индукции. 2. Из первого пункта мы уже знаем, что, , если дизъюнктны, то .Пусть . Полагая , для доказательства того, что является -алгеброй, нам нужно установить неравенство: ., поэтому . . При , получаем .Но , поэтому , и . Требуемое неравенство доказано, .Подставим в Дальше еще две строчки, но, вроде бы, они не нужны. вместо , получим . Но по -аддитивности внешней меры, , поэтому , и - -аддитивная мера на . |