Полукольца и алгебры — различия между версиями
(→Алгебра) |
Sementry (обсуждение | вклад) м |
||
Строка 49: | Строка 49: | ||
# <tex> B, C \in \mathcal A \Rightarrow B \cap C \in \mathcal A </tex> | # <tex> B, C \in \mathcal A \Rightarrow B \cap C \in \mathcal A </tex> | ||
− | <tex> \mathcal A </tex> называется '''σ-алгеброй''' (сигма-алгеброй, счетной алгеброй), если третья аксиома усилена требованием принадлежности <tex> \mathcal A </tex> пересечения счетного числа множеств | + | <tex> \mathcal A </tex> называется '''σ-алгеброй''' (сигма-алгеброй, счетной алгеброй), если третья аксиома усилена требованием принадлежности <tex> \mathcal A </tex> пересечения счетного числа множеств: |
<tex> B_1, B_2, ... \in A \Rightarrow \bigcap\limits_{n} B \in A </tex> | <tex> B_1, B_2, ... \in A \Rightarrow \bigcap\limits_{n} B \in A </tex> |
Версия 01:40, 8 января 2012
Полукольцо
Определение: |
Пусть
| — некоторое множество, — совокупность его подмножеств (не обязательно всех). Пара называется полукольцом, если:
Простой пример полукольца: .
Элементы этого полукольца называются ячейками.
Докажем теперь пару полезных утверждений для полуколец.
Утверждение: |
Пусть . Тогда дизъюнктны. |
Доказательство ведем индукцией по . При получаем в точности третью аксиому полукольца.Пусть теперь утверждение выполнялось для множества. Тогда получаем:Очевидно, множества из получившегося объединения дизъюнктны, как и требуется, поэтому утверждение выполняется для любого . |
Утверждение: |
Пусть . Тогда дизъюнктны. |
По доказанному выше утверждению, это объединение можно записать как: |
Алгебра
Определение: |
Пусть называется σ-алгеброй (сигма-алгеброй, счетной алгеброй), если третья аксиома усилена требованием принадлежности пересечения счетного числа множеств: | — некоторое множество, — совокупность его подмножеств. — алгебра, если:
Из данных аксиом следует, что и , поэтому алгебра замкнута относительно любых конечных теоретико-множественных операций.
σ-алгебра замкнута относительно теоретико-множественных операций с не более, чем счетным числом объектов.
Cигма-алгебры являются частным случаем обычных алгебр, которые, в свою очередь, являются частным случаем полуколец: