Реализация булевой функции схемой из функциональных элементов — различия между версиями
(внесена т.н. теорема из статьи "Изменение размера оптимальной схемы при переходе к другому базису") |
Proshev (обсуждение | вклад) |
||
Строка 69: | Строка 69: | ||
[http://www.intuit.ru/department/calculate/lancalc/2/ Лекция "Схемы из функциональных элементов" в Интернет Университете Информационных Технологий] | [http://www.intuit.ru/department/calculate/lancalc/2/ Лекция "Схемы из функциональных элементов" в Интернет Университете Информационных Технологий] | ||
+ | |||
+ | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Схемы из функциональных элементов ]] | [[Категория: Схемы из функциональных элементов ]] |
Версия 22:28, 16 января 2012
Содержание
Логические элементы
Функциональный элемент (англ. Combinational element) — устройство, предназначенное для обработки информации в цифровой форме. Функциональный элемент имеет входы и выходы. Сигналы на входах функционального элемента — аргументы функции, которую реализует функциональный элемент, сигналы на выходах — значение функции от аргументов.
Если входные и выходные сигналы — являются нулями и единицами, элемент называется логическим (англ. logic gate). При подаче на входы логического элемента любой комбинации двоичных сигналов, на выходах также возникает сигнал — значение булевой функции.
Отождествление переменных
Отождествление переменных осуществляется при помощи ветвления проводников.Подстановка
Чтобы осуществить подстановку одной функции в другую нужно выход логического элемента, который реализует первую функцию, направить на вход логического элемента, который реализует вторую функцию.
Изображение логических элементов на схемах
Тип элемента | И | ИЛИ | НЕ | Штрих Шеффера | Стрелка Пирса |
---|---|---|---|---|---|
Традиционная форма | |||||
Прямоугольная форма |
Схемная сложность
Определение: |
Схемная сложность функции | относительно базиса — это минимальное количество функциональных элементов из набора , необходимое для реализации функции в базисе . Схемную сложность функции в базисе обозначают так:
Теорема: |
Для любых базисов , и функции верно неравенство , где константа зависит только от базисов и . |
Доказательство: |
Пусть базис | состоит из функций . Каждый функциональный элемент базиса можно собрать с помощью элементов не более чем элементов из базиса . Собрать в базисе можно следующим образом: заменить каждый элемент схемы в базисе на схему соответствующей функции в базисе . Такая сборка использует не более чем в раз больше функциональных элементов, чем соответствующая схема в . Параметр зависит только от выбранных базисов.
Литература
Кормен, Т., Лейзерсон, Ч., Ривест, Р. Алгоритмы: построение и анализ = Introduction to Algorithms / Пер. с англ. под ред. А. Шеня. — М.: МЦНМО, 2000. — 960 с. — ISBN 5-900916-37-5
Ссылки
Статья Logic Gate на английской википедии
Лекция "Схемы из функциональных элементов" в Интернет Университете Информационных Технологий