Кратчайший путь в ациклическом графе — различия между версиями
IRomchig (обсуждение | вклад) |
Proshev (обсуждение | вклад) |
||
Строка 65: | Строка 65: | ||
*[[Динамическое_программирование#.D0.9F.D1.80.D0.B8.D0.BD.D1.86.D0.B8.D0.BF_.D0.BE.D0.BF.D1.82.D0.B8.D0.BC.D0.B0.D0.BB.D1.8C.D0.BD.D0.BE.D1.81.D1.82.D0.B8_.D0.BD.D0.B0_.D0.BF.D1.80.D0.B5.D1.84.D0.B8.D0.BA.D1.81.D0.B5|Принцип оптимальности на префиксе]] | *[[Динамическое_программирование#.D0.9F.D1.80.D0.B8.D0.BD.D1.86.D0.B8.D0.BF_.D0.BE.D0.BF.D1.82.D0.B8.D0.BC.D0.B0.D0.BB.D1.8C.D0.BD.D0.BE.D1.81.D1.82.D0.B8_.D0.BD.D0.B0_.D0.BF.D1.80.D0.B5.D1.84.D0.B8.D0.BA.D1.81.D0.B5|Принцип оптимальности на префиксе]] | ||
* [http://en.wikipedia.org/wiki/Optimal_substructure Принцип оптимальности на подзадаче (в качестве примера разбирается задача поиска кратчайшего пути в ациклическом графе)(англ.)] | * [http://en.wikipedia.org/wiki/Optimal_substructure Принцип оптимальности на подзадаче (в качестве примера разбирается задача поиска кратчайшего пути в ациклическом графе)(англ.)] | ||
− | [[Категория: | + | [[Категория:Дискретная математика и алгоритмы]] |
+ | [[Категория:Динамическое программирование]] |
Версия 23:32, 16 января 2012
Пусть дан ациклический ориентированный взвешенный граф. Требуется найти вес кратчайшего пути из u в v
Определение: |
Кратчайший путь из u в v – это такой путь из u в v, что его сумарный вес входящих в него ребер минимален |
Содержание
Решение
Пусть d — функция, где d(i) — вес кратчайшего пути из u в i. Ясно, что d(u) равен 0. Пусть w(i, j) - вес ребра из i в j. Будем обходить граф в порядке топологической сортировки. Получаем следующие соотношения:
Так как мы обходим граф в порядке топологической сортировки, то на i-ом шаге всем d(j) (j такие, что: существует ребро из j в i) уже присвоены оптимальные ответы, и следовательно d(i) также будет присвоен оптимальный ответ.
Реализация
Реализуем данный алгоритм:
//w - матрицы как в описании, d - массив как в описании, p - массив индексов вершин графа в порядке топологической сортировки, i, j - счетчики
inputData() //считывание данных
for i = 1 to n d[i] = infinity
p = topSort(w) //топологическая сортировка графа
d[p[u]] = 0
for i = 1 to n for j: есть ребро из p[i] в j d[j] = min(d[j], d[p[i]] + w[p[i]][j])
writeData(); // запись данных
Пример
Пусть дан граф со следующими весами w ребер:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
1 | - | - | - | 5 | - | - | - | - |
2 | 1 | - | 1 | - | 4 | 3 | - | - |
3 | - | - | - | - | - | 1 | - | - |
4 | - | - | - | - | - | - | - | - |
5 | - | - | - | 3 | - | - | - | 1 |
6 | - | - | - | 5 | - | - | 2 | - |
7 | - | - | - | 2 | - | - | - | - |
8 | - | - | - | 1 | - | - | - | - |
Требуется найти путь из 2 в 4.
Массив p будет выглядеть следующим образом:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
2 | 3 | 6 | 7 | 1 | 5 | 8 | 4 |
Массив d будет выглядеть следующим образом:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
1 | 0 | 3 | 5 | 3 | 2 | 4 | 4 |
Ответ равен 2.