Теорема Оре — различия между версиями
Строка 1: | Строка 1: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Если <tex>n \ge 3</tex> и <tex>deg\ u + deg\ v \ge n</tex> для любых двух различных несмежных вершин <tex>u</tex> и <tex>v</tex> неориентированного графа <tex>G</tex>, то <tex>G</tex> - гамильтонов граф. | + | Если <tex>n \ge 3</tex> и <tex>deg\ u + deg\ v \ge n</tex> для любых двух различных несмежных вершин <tex>u</tex> и <tex>v</tex> неориентированного графа <tex>G</tex>, то <tex>G</tex> {{---}} гамильтонов граф. |
|proof= | |proof= | ||
Строка 8: | Строка 8: | ||
Будем добавлять к нему новые ребра до тех пор, пока не получим максимальный негамильтонов граф <tex>G'</tex>. В силу того, что мы только добавляли ребра, условие теоремы не нарушилось. | Будем добавлять к нему новые ребра до тех пор, пока не получим максимальный негамильтонов граф <tex>G'</tex>. В силу того, что мы только добавляли ребра, условие теоремы не нарушилось. | ||
− | Пусть <tex>u,v</tex> несмежные вершины в полученном графе <tex>G'</tex>. Если добавить ребро <tex>uv</tex>, появится гамильтонов цикл. Тогда путь <tex>(u,v)</tex> - гамильтонов. | + | Пусть <tex>u,v</tex> несмежные вершины в полученном графе <tex>G'</tex>. Если добавить ребро <tex>uv</tex>, появится гамильтонов цикл. Тогда путь <tex>(u,v)</tex> {{---}} гамильтонов. |
Для вершин <tex>u,v</tex> выполнено <tex>deg\ u + deg\ v \ge n.</tex> | Для вершин <tex>u,v</tex> выполнено <tex>deg\ u + deg\ v \ge n.</tex> | ||
− | По принципу Дирихле всегда найдутся две смежные вершины <tex> t_1,t_2</tex> на пути <tex>(u,v)</tex> ,т.е. <tex>u..t_1t_2..v</tex> , такие, что существует ребро <tex>ut_2</tex> и ребро <tex>t_1v.</tex> | + | По принципу Дирихле всегда найдутся две смежные вершины <tex> t_1,t_2</tex> на пути <tex>(u,v)</tex>, т.е. <tex>u..t_1t_2..v</tex> , такие, что существует ребро <tex>ut_2</tex> и ребро <tex>t_1v.</tex> |
Действительно, пусть <tex>S=</tex> { <tex> i| e_i=ut_{i+1} \in EG</tex> } и <tex>T = </tex> { <tex> i| f_i=t_iv \in EG</tex> } | Действительно, пусть <tex>S=</tex> { <tex> i| e_i=ut_{i+1} \in EG</tex> } и <tex>T = </tex> { <tex> i| f_i=t_iv \in EG</tex> } | ||
Строка 19: | Строка 19: | ||
Тогда <tex>\left\vert S\cap T \right\vert = \left\vert S \right\vert + \left\vert T \right\vert - \left\vert S+T \right\vert > 0</tex> т.е. <tex>\exists i| ut_{i+1}\in EG</tex> и <tex> t_iv \in EG.</tex> | Тогда <tex>\left\vert S\cap T \right\vert = \left\vert S \right\vert + \left\vert T \right\vert - \left\vert S+T \right\vert > 0</tex> т.е. <tex>\exists i| ut_{i+1}\in EG</tex> и <tex> t_iv \in EG.</tex> | ||
− | Получили противоречие, т.к. <tex>u..t_1v..t_2u</tex> - гамильтонов цикл. | + | Получили противоречие, т.к. <tex>u..t_1v..t_2u</tex> {{---}} гамильтонов цикл. |
}} | }} | ||
== Источники == | == Источники == | ||
− | 1. Асанов М. О., Баранский В. А., Расин В. В. - Дискретная математика: Графы, матроиды, алгоритмы. '''ISBN 978-5-8114-1068-2'''<br /> | + | 1. Асанов М. О., Баранский В. А., Расин В. В. {{---}} Дискретная математика: Графы, матроиды, алгоритмы. '''ISBN 978-5-8114-1068-2'''<br /> |
− | 2. Харари | + | 2. Харари {{---}} Теория графов. '''ISBN 978-5-397-00622-4''' |
[[Категория: Алгоритмы и структуры данных]] | [[Категория: Алгоритмы и структуры данных]] | ||
[[Категория: Обходы графов]] | [[Категория: Обходы графов]] |
Версия 08:06, 3 февраля 2012
Теорема: |
Если и для любых двух различных несмежных вершин и неориентированного графа , то — гамильтонов граф. |
Доказательство: |
Пусть, от противного, существует граф , который удовлетворяет условию теоремы, но не является гамильтоновым графом. Будем добавлять к нему новые ребра до тех пор, пока не получим максимальный негамильтонов граф . В силу того, что мы только добавляли ребра, условие теоремы не нарушилось.Пусть несмежные вершины в полученном графе . Если добавить ребро , появится гамильтонов цикл. Тогда путь — гамильтонов.Для вершин выполненоПо принципу Дирихле всегда найдутся две смежные вершины на пути , т.е. , такие, что существует ребро и реброДействительно, пусть { } и { }Имеем: , ноТогда Получили противоречие, т.к. т.е. и — гамильтонов цикл. |
Источники
1. Асанов М. О., Баранский В. А., Расин В. В. — Дискретная математика: Графы, матроиды, алгоритмы. ISBN 978-5-8114-1068-2
2. Харари — Теория графов. ISBN 978-5-397-00622-4