Точка сочленения, эквивалентные определения — различия между версиями
Proshev (обсуждение | вклад) |
|||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | (1) | + | (1) '''Точка сочленения''' [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|графа]] <tex>G</tex> {{---}} вершина, принадлежащая как минимум двум блокам <tex>G</tex>. |
}} | }} | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | (2) | + | (2) '''Точка сочленения''' графа <tex>G</tex> {{---}} вершина, при удалении которой в <tex>G</tex> увеличивается число [[Отношение связности, компоненты связности|компонент связности]]. |
}} | }} | ||
− | [[Файл:Verticl.png|thumb|left|250px|Вершины a, b, c - точки сочленения графа G.]] | + | [[Файл:Verticl.png|thumb|left|250px|Вершины <tex>a</tex>, <tex>b</tex>, <tex>c</tex> - точки сочленения графа <tex>G</tex>.]] |
{{Лемма | {{Лемма | ||
Строка 17: | Строка 17: | ||
<tex>2 \Rightarrow 1</tex> Пусть <tex>v</tex> принадлежала только одному блоку <tex>C</tex>. Все вершины <tex>u_1...u_n</tex>, смежные с <tex>v</tex>, также лежат в <tex>C</tex> (в силу рефлексивности отношения вершинной двусвязности). Между каждой парой <tex>u_i, u_j</tex> вершин из <tex>u_1...u_n</tex> существует как минимум два вершинно непересекающихся пути. Теперь удалим <tex>v</tex>. Это разрушит путь <tex>u_{i}vu_{j}</tex>, но не разрушит любой оставшийся, так как иначе он тоже прошел бы через <tex>v</tex>. | <tex>2 \Rightarrow 1</tex> Пусть <tex>v</tex> принадлежала только одному блоку <tex>C</tex>. Все вершины <tex>u_1...u_n</tex>, смежные с <tex>v</tex>, также лежат в <tex>C</tex> (в силу рефлексивности отношения вершинной двусвязности). Между каждой парой <tex>u_i, u_j</tex> вершин из <tex>u_1...u_n</tex> существует как минимум два вершинно непересекающихся пути. Теперь удалим <tex>v</tex>. Это разрушит путь <tex>u_{i}vu_{j}</tex>, но не разрушит любой оставшийся, так как иначе он тоже прошел бы через <tex>v</tex>. | ||
− | Рассмотрим <tex>D</tex> - компоненту связности, в которой лежала <tex>v</tex>. Пусть между вершинами <tex>u, w \in D</tex> существовал путь, проходящий через <tex>v</tex>. Но он проходил также через некоторые вершины из <tex>u_1...u_n</tex>, связность которых не нарушилась, поэтому есть как минимум еще один путь, отличный от удаленного. Противоречие: число компонент связности не увеличилось. | + | Рассмотрим <tex>D</tex> {{---}} компоненту связности, в которой лежала <tex>v</tex>. Пусть между вершинами <tex>u, w \in D</tex> существовал путь, проходящий через <tex>v</tex>. Но он проходил также через некоторые вершины из <tex>u_1...u_n</tex>, связность которых не нарушилась, поэтому есть как минимум еще один путь, отличный от удаленного. Противоречие: число компонент связности не увеличилось. |
}} | }} | ||
Строка 24: | Строка 24: | ||
|statement= | |statement= | ||
Следующие утверждения эквивалентны: | Следующие утверждения эквивалентны: | ||
− | (1) <tex>v</tex> - точка сочленения графа <tex>G</tex>; | + | (1) <tex>v</tex> {{---}} точка сочленения графа <tex>G</tex>; |
(2) существуют такие вершины <tex>u</tex> и <tex>w</tex>, отличные от <tex>v</tex>, что <tex>v</tex> принадлежит любому простому пути из <tex>u</tex> в <tex>w</tex>; | (2) существуют такие вершины <tex>u</tex> и <tex>w</tex>, отличные от <tex>v</tex>, что <tex>v</tex> принадлежит любому простому пути из <tex>u</tex> в <tex>w</tex>; | ||
Строка 31: | Строка 31: | ||
|proof= | |proof= | ||
− | <tex>1 \Rightarrow 3</tex> Так как <tex>v</tex> - точка сочленения графа <tex>G</tex>, то граф <tex>G \setminus v</tex> не связен и имеет по крайней мере две компоненты. Образуем разбиение <tex>V \setminus \{v\}</tex>, отнеся к <tex>U</tex> вершины одной из этих компонент, а к <tex>W</tex> - вершины всех остальных компонент. Тогда любые две вершины <tex>u \in U</tex> и <tex>w \in W</tex> лежат в разных компонентах графа <tex>G \setminus v</tex>. Следовательно, любой простой путь из <tex>u</tex> в <tex>w</tex> графа <tex>G</tex> содержит <tex>v</tex>. | + | <tex>1 \Rightarrow 3</tex> Так как <tex>v</tex> {{---}} точка сочленения графа <tex>G</tex>, то граф <tex>G \setminus v</tex> не связен и имеет по крайней мере две компоненты. Образуем разбиение <tex>V \setminus \{v\}</tex>, отнеся к <tex>U</tex> вершины одной из этих компонент, а к <tex>W</tex> {{---}} вершины всех остальных компонент. Тогда любые две вершины <tex>u \in U</tex> и <tex>w \in W</tex> лежат в разных компонентах графа <tex>G \setminus v</tex>. Следовательно, любой простой путь из <tex>u</tex> в <tex>w</tex> графа <tex>G</tex> содержит <tex>v</tex>. |
<tex>3 \Rightarrow 2</tex> Следует из того, что (2) - частный случай (3). | <tex>3 \Rightarrow 2</tex> Следует из того, что (2) - частный случай (3). | ||
− | <tex>2 \Rightarrow 1</tex> Если <tex>v</tex> принадлежит любому простому пути в <tex>G</tex>, соединяющему <tex>u</tex> и <tex>w</tex>, то в <tex>G</tex> нет простого пути, соединяющего эти вершины в <tex>G \setminus \{v\}</tex>. Поскольку <tex>G \setminus \{v\}</tex> не связен, то <tex>v</tex> - точка сочленения графа <tex>G</tex>. | + | <tex>2 \Rightarrow 1</tex> Если <tex>v</tex> принадлежит любому простому пути в <tex>G</tex>, соединяющему <tex>u</tex> и <tex>w</tex>, то в <tex>G</tex> нет простого пути, соединяющего эти вершины в <tex>G \setminus \{v\}</tex>. Поскольку <tex>G \setminus \{v\}</tex> не связен, то <tex>v</tex> {{---}} точка сочленения графа <tex>G</tex>. |
}} | }} | ||
Версия 09:28, 6 февраля 2012
Определение: |
(1) Точка сочленения графа — вершина, принадлежащая как минимум двум блокам . |
Определение: |
(2) Точка сочленения графа компонент связности. | — вершина, при удалении которой в увеличивается число
Лемма: |
Определения (1) и (2) эквивалентны. |
Доказательство: |
Пусть вершина принадлежит некоторым блокам и . Вершине инцидентны некоторые ребра и . Ребра и находятся в различных блоках, поэтому не существует двух непересекающихся путей между их концами. Учитывая, что один из путей между концами - путь из в эту же вершину, получаем, что любой путь, соединяющий и , пройдет через . При удалении между и не останется путей, и одна из компонент связности распадется на две. Рассмотрим Пусть принадлежала только одному блоку . Все вершины , смежные с , также лежат в (в силу рефлексивности отношения вершинной двусвязности). Между каждой парой вершин из существует как минимум два вершинно непересекающихся пути. Теперь удалим . Это разрушит путь , но не разрушит любой оставшийся, так как иначе он тоже прошел бы через . — компоненту связности, в которой лежала . Пусть между вершинами существовал путь, проходящий через . Но он проходил также через некоторые вершины из , связность которых не нарушилась, поэтому есть как минимум еще один путь, отличный от удаленного. Противоречие: число компонент связности не увеличилось. |
Теорема: |
Следующие утверждения эквивалентны:
(1) — точка сочленения графа ;(2) существуют такие вершины (3) существует разбиение множества вершин и , отличные от , что принадлежит любому простому пути из в ; на такие два подмножества и , что для любых вершин и вершина принадлежит любому простому пути из в . |
Доказательство: |
Так как — точка сочленения графа , то граф не связен и имеет по крайней мере две компоненты. Образуем разбиение , отнеся к вершины одной из этих компонент, а к — вершины всех остальных компонент. Тогда любые две вершины и лежат в разных компонентах графа . Следовательно, любой простой путь из в графа содержит . Следует из того, что (2) - частный случай (3). Если принадлежит любому простому пути в , соединяющему и , то в нет простого пути, соединяющего эти вершины в . Поскольку не связен, то — точка сочленения графа . |
Литература
- Харари, Ф. Теория графов. — М.: Книжный дом «ЛИБРОКОМ», 2009