Теорема Понтрягина-Куратовского — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 59: Строка 59:
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
Внешними частями будем называть внешние компоненты вместе со всеми рёбрами, соединяющими компоненту с вершинами цикла <tex>C</tex>, и инцидентными им вершинами (см. рис. 7), либо рёбра графа <tex>G'</tex>, лежащие снаружи от цикла <tex>C</tex> и соединяющие две вершины из <tex>C</tex>, вместе с инцидентными такому ребру вершинами (см. рис. 8).
+
Внешними частями будем называть внешние компоненты вместе со всеми рёбрами, соединяющими компоненту с вершинами цикла <tex>C</tex>, и инцидентными им вершинами , либо рёбра графа <tex>G'</tex>, лежащие снаружи от цикла <tex>C</tex> и соединяющие две вершины из <tex>C</tex>, вместе с инцидентными такому ребру вершинами.
 
}}
 
}}
 
[[Файл:pict-1.jpg|center|200px|рис. 7]][[Файл:pict-2.jpg|center|125px|рис. 8]]
 
[[Файл:pict-1.jpg|center|200px|рис. 7]][[Файл:pict-2.jpg|center|125px|рис. 8]]
Строка 80: Строка 80:
 
1) Любая внешняя часть встречает цикл <tex>C</tex> точно в двух точках, одна из которых лежит в <tex>C(a,b)</tex>, а другая — в <tex>C(b,a)</tex>.
 
1) Любая внешняя часть встречает цикл <tex>C</tex> точно в двух точках, одна из которых лежит в <tex>C(a,b)</tex>, а другая — в <tex>C(b,a)</tex>.
 
|proof =  
 
|proof =  
Если внешняя часть встречает цикл <tex>C</tex> точно в одной точке <tex>v</tex>, то <tex>v</tex> является точкой сочленения графа <tex>G</tex>, что невозможно (см. рис. 9).
+
Если внешняя часть встречает цикл <tex>C</tex> точно в одной точке <tex>v</tex>, то <tex>v</tex> является точкой сочленения графа <tex>G</tex>, что невозможно.
 
[[Файл:pict-3.jpg|center|рис. 9]]
 
[[Файл:pict-3.jpg|center|рис. 9]]
Таким образом, внешняя часть встречает цикл <tex>C</tex> не менее чем в двух точках. Если внешняя часть встречает цикл <tex>C</tex> в двух точках из <tex>C[a,b]</tex> (случай <tex>C[b,a]</tex> рассматривается аналогично), то в <tex>G'</tex> имеется цикл, содержащий внутри себя больше граней, чем цикл <tex>C</tex>, и проходящий через <tex>a</tex> и <tex>b</tex>, что невозможно (см. рис. 10).
+
Таким образом, внешняя часть встречает цикл <tex>C</tex> не менее чем в двух точках. Если внешняя часть встречает цикл <tex>C</tex> в двух точках из <tex>C[a,b]</tex> (случай <tex>C[b,a]</tex> рассматривается аналогично), то в <tex>G'</tex> имеется цикл, содержащий внутри себя больше граней, чем цикл <tex>C</tex>, и проходящий через <tex>a</tex> и <tex>b</tex>, что невозможно.
 
[[Файл:pict-4.jpg|center|рис. 10]]
 
[[Файл:pict-4.jpg|center|рис. 10]]
 
Итого, внешняя часть встречает цикл <tex>C</tex> хотя бы в двух точках, никакие две из которых не лежат в <tex>C[a,b]</tex> и <tex>C[b,a]</tex>. То есть ровно одна лежит в <tex>C(a,b)</tex> и ровно одна - в <tex>C(b,a)</tex>.
 
Итого, внешняя часть встречает цикл <tex>C</tex> хотя бы в двух точках, никакие две из которых не лежат в <tex>C[a,b]</tex> и <tex>C[b,a]</tex>. То есть ровно одна лежит в <tex>C(a,b)</tex> и ровно одна - в <tex>C(b,a)</tex>.
Строка 95: Строка 95:
 
2) Существует хотя бы одна <tex>(a,b)</tex>-разделяющая внутренняя часть.
 
2) Существует хотя бы одна <tex>(a,b)</tex>-разделяющая внутренняя часть.
 
|proof =
 
|proof =
Пусть, от противного, таких частей нет. Тогда, выходя из <tex>a</tex> внутри области, ограниченной <tex>C</tex>, и двигаясь вблизи от <tex>C</tex> по направлению обхода <tex>C</tex> и вблизи от встречающихся внутренних частей, можно уложить ребро <tex>e = ab</tex> внутри цикла <tex>C</tex> (см. рис. 11), т.е. <tex>G</tex> - планарный граф, что невозможно.[[Файл:pict-5.jpg|center|180px|рис. 11]]
+
Пусть, от противного, таких частей нет. Тогда, выходя из <tex>a</tex> внутри области, ограниченной <tex>C</tex>, и двигаясь вблизи от <tex>C</tex> по направлению обхода <tex>C</tex> и вблизи от встречающихся внутренних частей, можно уложить ребро <tex>e = ab</tex> внутри цикла <tex>C</tex>, т.е. <tex>G</tex> - планарный граф, что невозможно.[[Файл:pict-5.jpg|center|180px|рис. 11]]
 
}}
 
}}
 
{{Лемма
 
{{Лемма
 
|statement =
 
|statement =
3) Существует внешняя часть, встречающая <tex>C(a,b)</tex> в точке <tex>c</tex> и <tex>C(b,a)</tex> — в точке <tex>d</tex>, для которой найдётся внутренняя часть, являющаяся одновременно <tex>(a,b)</tex>-разделяющей и <tex>(c,d)</tex>-разделяющей (см. рис. 12).
+
3) Существует внешняя часть, встречающая <tex>C(a,b)</tex> в точке <tex>c</tex> и <tex>C(b,a)</tex> — в точке <tex>d</tex>, для которой найдётся внутренняя часть, являющаяся одновременно <tex>(a,b)</tex>-разделяющей и <tex>(c,d)</tex>-разделяющей.
 
[[Файл:pict-6.jpg|center|160px|рис. 12]]
 
[[Файл:pict-6.jpg|center|160px|рис. 12]]
 
|proof =
 
|proof =
Пусть, от противного, лемма 3 неверна. Упорядочим <tex>(a,b)</tex>-разделяющие внутренние части в порядке их прикрепления к циклу <tex>C</tex> при движении по циклу от <tex>a</tex> до <tex>b</tex> и обозначим их соответственно через <tex>In_{1},In_{2},...</tex>. Пусть <tex>u_{1}</tex> и <tex>u_{2}</tex> — первая и последняя вершины из <tex>C(a,b)</tex>, в которых <tex>In_{1}</tex> встречает цикл <tex>C</tex>, а <tex>v_{1}</tex> и <tex>v_{2}</tex> — первая и последняя вершины из <tex>C(b,a)</tex>, в которых <tex>In_{1}</tex> встречает цикл <tex>C</tex> (возможно, вообще говоря, <tex>u_{1} = u_{2}</tex> или <tex>v_{1} = v_{2}</tex>). Поскольку лемма 3 неверна, для любой внешней части обе её вершины, в которых она встречает <tex>C</tex>, лежат либо на <tex>C[v_{2},u_{1}]</tex>, либо на <tex>C[u_{2},v_{1}]</tex>. Тогда снаружи цикла <tex>C</tex> можно провести жорданову кривую <tex>P</tex>, не пересекая рёбер графа <tex>G'</tex>, соединяющую <tex>v_{2}</tex> с <tex>u_{1}</tex> (см. рис. 13).
+
Пусть, от противного, лемма 3 неверна. Упорядочим <tex>(a,b)</tex>-разделяющие внутренние части в порядке их прикрепления к циклу <tex>C</tex> при движении по циклу от <tex>a</tex> до <tex>b</tex> и обозначим их соответственно через <tex>In_{1},In_{2},...</tex>. Пусть <tex>u_{1}</tex> и <tex>u_{2}</tex> — первая и последняя вершины из <tex>C(a,b)</tex>, в которых <tex>In_{1}</tex> встречает цикл <tex>C</tex>, а <tex>v_{1}</tex> и <tex>v_{2}</tex> — первая и последняя вершины из <tex>C(b,a)</tex>, в которых <tex>In_{1}</tex> встречает цикл <tex>C</tex> (возможно, вообще говоря, <tex>u_{1} = u_{2}</tex> или <tex>v_{1} = v_{2}</tex>). Поскольку лемма 3 неверна, для любой внешней части обе её вершины, в которых она встречает <tex>C</tex>, лежат либо на <tex>C[v_{2},u_{1}]</tex>, либо на <tex>C[u_{2},v_{1}]</tex>. Тогда снаружи цикла <tex>C</tex> можно провести жорданову кривую <tex>P</tex>, не пересекая рёбер графа <tex>G'</tex>, соединяющую <tex>v_{2}</tex> с <tex>u_{1}</tex>.
 
[[Файл:pict-7.jpg|center|200px|рис. 13]]
 
[[Файл:pict-7.jpg|center|200px|рис. 13]]
 
Поскольку на участках <tex>C(u_{1},u_{2})</tex> и <tex>C(v_{1},v_{2})</tex> нет точек прикрепления внешних частей, используя жорданову кривую <tex>P</tex>, внутреннюю часть <tex>In_{1}</tex> можно перебросить ("вывернуть" наружу от цикла <tex>C</tex>) во внешнюю область цикла <tex>C</tex>, т.е. уложить её снаружи от цикла <tex>C</tex> и сделать её внешней частью.
 
Поскольку на участках <tex>C(u_{1},u_{2})</tex> и <tex>C(v_{1},v_{2})</tex> нет точек прикрепления внешних частей, используя жорданову кривую <tex>P</tex>, внутреннюю часть <tex>In_{1}</tex> можно перебросить ("вывернуть" наружу от цикла <tex>C</tex>) во внешнюю область цикла <tex>C</tex>, т.е. уложить её снаружи от цикла <tex>C</tex> и сделать её внешней частью.
Строка 111: Строка 111:
 
== Разбор случаев взаимного положения ''a, b, c, d, u1, u2, v1, v2'' ==
 
== Разбор случаев взаимного положения ''a, b, c, d, u1, u2, v1, v2'' ==
 
Рассмотрим 2 случая.
 
Рассмотрим 2 случая.
[[Файл:Case_1.png|thumb|right|рис. 1]]
+
[[Файл:Case_1.png|thumb|right|рис. 7.1]]
  
 
1. Пусть пара вершин <tex>\ v_1  </tex> и <tex>\ v_2  </tex> является <tex>(a, b)</tex>-разделяющей. <br>
 
1. Пусть пара вершин <tex>\ v_1  </tex> и <tex>\ v_2  </tex> является <tex>(a, b)</tex>-разделяющей. <br>
Тогда, в частности, <tex>v_2 \ne a</tex>  и  <tex> v_1 \ne b</tex>. В этом случае граф <tex>G</tex> содержит подграф, гомеоморфный <tex>\ K_{3,3}  </tex> (отметим, что в <tex> In </tex> существует простая <tex>(v_1, v_2)</tex>-цепь) (рис. 1).
+
Тогда, в частности, <tex>v_2 \ne a</tex>  и  <tex> v_1 \ne b</tex>. В этом случае граф <tex>G</tex> содержит подграф, гомеоморфный <tex>\ K_{3,3}  </tex> (отметим, что в <tex> In </tex> существует простая <tex>(v_1, v_2)</tex>-цепь) (рис. 7.1).
  
 
2. Пусть пара вершин <tex>v_1</tex> и <tex>v_2</tex> не является <tex>(a, b)</tex>-разделяющей. <br>
 
2. Пусть пара вершин <tex>v_1</tex> и <tex>v_2</tex> не является <tex>(a, b)</tex>-разделяющей. <br>
 
Тогда <tex>v_1, v_2</tex> лежат на <tex>C[a, b]</tex> или на <tex>C[b, a]</tex>. Без ограничения общности будет считать, что <tex>v_1</tex> и <tex>v_2</tex> лежат на <tex>C[a, b]</tex>.<br>
 
Тогда <tex>v_1, v_2</tex> лежат на <tex>C[a, b]</tex> или на <tex>C[b, a]</tex>. Без ограничения общности будет считать, что <tex>v_1</tex> и <tex>v_2</tex> лежат на <tex>C[a, b]</tex>.<br>
  
2.1. Пусть <tex>v_1</tex> и <tex>v_2</tex> лежат на <tex>C(a, b)</tex>, т.е. <tex>v_1 \ne b</tex> и <tex>v_2 \ne a</tex> (рис. 2). <br>
+
2.1. Пусть <tex>v_1</tex> и <tex>v_2</tex> лежат на <tex>C(a, b)</tex>, т.е. <tex>v_1 \ne b</tex> и <tex>v_2 \ne a</tex> (рис. 7.2). <br>
  
 
2.1.1 Пусть <tex>u_2</tex> лежит на <tex>C(d, a)</tex>.<br>
 
2.1.1 Пусть <tex>u_2</tex> лежит на <tex>C(d, a)</tex>.<br>
Тогда в графе <tex>G</tex> имеется подграф, гомеоморфный <tex>K_{3,3}</tex> (рис. 3).<br>
+
Тогда в графе <tex>G</tex> имеется подграф, гомеоморфный <tex>K_{3,3}</tex> (рис. 7.3).<br>
  
 
2.1.2. Пусть <tex>u_2 = d</tex>.<br>
 
2.1.2. Пусть <tex>u_2 = d</tex>.<br>
Тогда во внешней части <tex>In</tex> имеется вершина <tex>w</tex> и три простые цепи от <tex>w</tex> соответственно до <tex>d, v_1, v_2</tex>, которые в качестве общей точки имеют только точку <tex>w</tex>. В этом случае в графе <tex>G</tex> имеется подграф, гомеоморфный <tex>K_{3,3}</tex> (рис. 4).<br>
+
Тогда во внешней части <tex>In</tex> имеется вершина <tex>w</tex> и три простые цепи от <tex>w</tex> соответственно до <tex>d, v_1, v_2</tex>, которые в качестве общей точки имеют только точку <tex>w</tex>. В этом случае в графе <tex>G</tex> имеется подграф, гомеоморфный <tex>K_{3,3}</tex> (рис. 7.4).<br>
  
 
2.1.3. Пусть <tex>u_2</tex> лежит на <tex>C(b, d)</tex>.<br>
 
2.1.3. Пусть <tex>u_2</tex> лежит на <tex>C(b, d)</tex>.<br>
Тогда в графе <tex>G</tex> есть подграф, гомеоморфный <tex>K_{3,3}</tex> (рис. 5).<br>
+
Тогда в графе <tex>G</tex> есть подграф, гомеоморфный <tex>K_{3,3}</tex> (рис. 7.5).<br>
  
 
<center><gallery style="text-align:center; font-size:90%" >
 
<center><gallery style="text-align:center; font-size:90%" >
Файл:Сase_2.1.png|рис. 2
+
Файл:Сase_2.1.png|рис. 7.2
Файл:Сase_2.1.1.png|рис. 3
+
Файл:Сase_2.1.1.png|рис. 7.3
Файл:Сase_2.1.2.png|рис. 4
+
Файл:Сase_2.1.2.png|рис. 7.4
Файл:Сase_2.1.3.png|рис. 5
+
Файл:Сase_2.1.3.png|рис. 7.5
 
</gallery></center>
 
</gallery></center>
  
Строка 142: Строка 142:
  
 
2.2.1. Пусть <tex>u_2</tex> лежит на <tex>C(d, a)</tex>.<br>
 
2.2.1. Пусть <tex>u_2</tex> лежит на <tex>C(d, a)</tex>.<br>
Тогда в графе <tex>G</tex> есть пограф, гомеоморфный <tex>K_{3,3}</tex> (рис. 6).<br>
+
Тогда в графе <tex>G</tex> есть пограф, гомеоморфный <tex>K_{3,3}</tex> (рис. 7.6).<br>
  
 
2.2.2. Пусть <tex>u_2 = d</tex>.<br>
 
2.2.2. Пусть <tex>u_2 = d</tex>.<br>
Тогда в графе <tex>G</tex> имеется подграф, гомеоморфный <tex>K_{3,3}</tex> (рис. 7).<br>
+
Тогда в графе <tex>G</tex> имеется подграф, гомеоморфный <tex>K_{3,3}</tex> (рис. 7.7).<br>
  
 
2.2.3. Пусть <tex>u_2</tex> лежит на <tex>C(b, d)</tex>.<br>
 
2.2.3. Пусть <tex>u_2</tex> лежит на <tex>C(b, d)</tex>.<br>
Тогда в графе <tex>G</tex> имеется подграф, гомеоморфный <tex>K_{3,3}</tex> (рис. 8). <br>
+
Тогда в графе <tex>G</tex> имеется подграф, гомеоморфный <tex>K_{3,3}</tex> (рис. 7.8). <br>
  
 
<center><gallery style="text-align:center; font-size:90%" >
 
<center><gallery style="text-align:center; font-size:90%" >
Файл:Сase_2.2.1.png|рис. 6
+
Файл:Сase_2.2.1.png|рис. 7.6
Файл:Сase_2.2.2.png|рис. 7
+
Файл:Сase_2.2.2.png|рис. 7.7
Файл:Сase_2.2.3.png|рис. 8
+
Файл:Сase_2.2.3.png|рис. 7.8
 
</gallery></center>
 
</gallery></center>
  
2.3. Пусть <tex>v_2 = a</tex> (рис. 9).<br>
+
2.3. Пусть <tex>v_2 = a</tex> (рис. 7.9).<br>
Рассмотрим теперь пару вершин <tex>u_1</tex> и <tex>u_2</tex>. Будем считать, что <tex>u_1 = c</tex> и <tex>u_2 = d</tex>, поскольку все другие случаи расположения вершин <tex>u_1</tex> и <tex>u_2</tex> так же, как были рассмотрены все случаи расположения <tex>v_1</tex> и <tex>v_2</tex>. Пусть <tex>P_1</tex> и <tex>P_2</tex> — соответственно кратчайшие простые <tex>(a, b)</tex>-цепь и <tex>(c, d)</tex>-цепь по внутренней части <tex>In</tex> (рис. 10).
+
Рассмотрим теперь пару вершин <tex>u_1</tex> и <tex>u_2</tex>. Будем считать, что <tex>u_1 = c</tex> и <tex>u_2 = d</tex>, поскольку все другие случаи расположения вершин <tex>u_1</tex> и <tex>u_2</tex> так же, как были рассмотрены все случаи расположения <tex>v_1</tex> и <tex>v_2</tex>. Пусть <tex>P_1</tex> и <tex>P_2</tex> — соответственно кратчайшие простые <tex>(a, b)</tex>-цепь и <tex>(c, d)</tex>-цепь по внутренней части <tex>In</tex> (рис. 7.10).
 
Заметим, что <tex>P_1</tex> и <tex>P_2</tex> имеют общую точку.<br>
 
Заметим, что <tex>P_1</tex> и <tex>P_2</tex> имеют общую точку.<br>
  
 
2.3.1. Пусть цепи <tex>P_1</tex> и <tex>P_2</tex> имеют более одной общей точки.<br>
 
2.3.1. Пусть цепи <tex>P_1</tex> и <tex>P_2</tex> имеют более одной общей точки.<br>
Тогда в графе <tex>G</tex> есть подграф, гомеоморфный <tex>K_{3,3}</tex> (рис. 11).<br>
+
Тогда в графе <tex>G</tex> есть подграф, гомеоморфный <tex>K_{3,3}</tex> (рис. 7.11).<br>
  
 
2.3.2. Пусть цепи <tex>P_1</tex> и <tex>P_2</tex> имеют точно одну общую точку <tex>w</tex>.<br>
 
2.3.2. Пусть цепи <tex>P_1</tex> и <tex>P_2</tex> имеют точно одну общую точку <tex>w</tex>.<br>
Тогда в графе <tex>G</tex> есть подграф, гомеоморфный <tex>K_5</tex> (рис. 12).<br>
+
Тогда в графе <tex>G</tex> есть подграф, гомеоморфный <tex>K_5</tex> (рис. 7.12).<br>
  
 
<center><gallery style="text-align:center; font-size:90%" >
 
<center><gallery style="text-align:center; font-size:90%" >
Файл:Сase_2.3(a).png|рис. 9
+
Файл:Сase_2.3(a).png|рис. 7.9
Файл:Сase_2.3(b).png|рис. 10
+
Файл:Сase_2.3(b).png|рис. 7.10
Файл:Сase_2.3.1.png|рис. 11
+
Файл:Сase_2.3.1.png|рис. 7.11
Файл:Сase_2.3.2.png|рис. 12
+
Файл:Сase_2.3.2.png|рис. 7.12
 
</gallery></center>
 
</gallery></center>
  
Строка 178: Строка 178:
 
==Литература==
 
==Литература==
 
*  Асанов М., Баранский В., Расин В. — Дискретная математика — Графы, матроиды, алгоритмы
 
*  Асанов М., Баранский В., Расин В. — Дискретная математика — Графы, матроиды, алгоритмы
 
+
* [http://ru.wikipedia.org/wiki/%D0%A1%D1%82%D0%B5%D1%80%D0%B5%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BF%D1%80%D0%BE%D0%B5%D0%BA%D1%86%D0%B8%D1%8F Стереографическая проекция]
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Укладки графов ]]
 
[[Категория: Укладки графов ]]

Версия 16:15, 26 февраля 2012

Определение:
Граф [math] G_1 [/math] гомеоморфен [math] G_2 [/math] , если [math] G_1 [/math] можно получить из [math] G_2 [/math] с помощью конечного числа применений процедур включения и исключения вершин степени 2.
Теорема:
Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных [math] K_{5} [/math], и не содержит подграфов, гомеоморфных [math] K_{3, 3} [/math] .
Доказательство:
[math]\triangleright[/math]

Необходимость

Достаточность

От противного: пусть существует непланарный граф, который не содержит подграфов, гомеоморфных [math] K_{5} [/math] или [math] K_{3, 3} [/math]. Пусть [math] G [/math] — такой граф с наименьшим возможным числом рёбер, не содержащий изолированных вершин.

G связен

Если [math] G [/math] не связен, то его компоненты связности планарны и, следовательно, сам граф [math] G [/math] планарен.

G — обыкновенный граф

В самом деле, пусть в графе [math] G [/math] есть петля или кратное ребро [math] e [/math]. Тогда граф [math] G - e [/math] планарен. Добавляя ребро [math] e [/math] к графу [math] G - e [/math] получим, что граф [math] G [/math] он планарен.

G — блок

Пусть, от противного, в графе есть точка сочленения [math] v [/math]. Через [math] G_1 [/math] обозначим подграф графа [math] G [/math], порождённый вершинами одной из компонент связности графа [math] G - v[/math] и вершинной [math] v [/math], а через [math] G_2 [/math] подграф графа [math] G [/math], порождённый вершинами остальных компонент связности графа [math] G - v [/math] и вершиной [math] v [/math]. (рис. 1)

рис. 1

Возьмём укладку графа [math] G_1 [/math] на плоскости такую, что вершина [math] v [/math] лежит на границе внешней грани. Ее можно получить взяв любую укладку [math] G_1 [/math] на плоскости, по ней построить укладку на шаре используя обратную стереографическую проекцию, потом повернуть сферу так чтоб [math] v [/math] оказалась на внешней грани стереографической проекции повернутого шара.

Затем во внешней грани графа [math] G_1 [/math] возьмём укладку графа [math] G_2 [/math] такую, что вершина [math] v [/math] будет представлена на плоскости в двух экземплярах. (рис. 2)

рис. 2

Соединим два экземпляра вершины [math] v [/math] пучком жордановых линий, не допуская лишних пересечений с укладками графов [math] G_1 [/math] и [math] G_2 [/math], состоящим из такого количества линий, какова степень вершины [math] v [/math] в графе [math] G_2 [/math]. Далее отбросим вхождение вершины [math] v [/math] в граф [math] G_2 [/math], заменяя инцидентные её рёбра на жордановы линии, полученные из линий указанного пучка и рёбер (рис. 3)

рис. 3

Таким образом мы получили укладку графа [math] G [/math] на плоскости, что невозможно.

В G' существует цикл, содержащий вершины a и b

Пусть [math] e = ab [/math] — произвольное ребро графа [math] G [/math], [math] G' = G - e [/math].

  1. граф [math] G' [/math] планарен в силу минимальности графа [math] G [/math].
  2. граф [math] G' [/math] связен в силу отсутствия в графе [math] G [/math] мостов.

Пусть [math] a [/math] и [math] b [/math] лежат в одном блоке [math] B [/math] графа [math] G' [/math].

  1. Если [math] |VB| \gt = 3 [/math], то существует цикл графа G', содержащий вершины [math] a [/math] и [math] b [/math].
  2. Если [math] |VB| = 2 [/math], то в [math] B [/math] имеется ребро [math] e' = ab [/math], но тогда в [math] G [/math] имеются кратные рёбра [math] e [/math] и [math] e' [/math], что невозможно.
  3. Если вершины [math] a [/math] и [math] b [/math] лежат в разных блоках графа [math] G' [/math], что существует точка сочленения [math] v [/math], принадлежащая любой простой (a, b)-цепи графа [math] G' [/math]. Через [math] G'_1 [/math] обозначим подграф графа [math] G' [/math], порождённый вершиной [math] v [/math] и вершинами компоненты связности графа [math] G' - v [/math], содержащей [math] a [/math], а через [math] G'_2 [/math] - подграф графа [math] G' [/math], порождённый вершиной [math] v [/math] и вершинами остальных компонент связности графа [math] G' - v [/math] (в этом множестве лежит вершина [math] b [/math]). Пусть [math] G''_1 = G'_1 + e_1 [/math], где [math] e_1 = vb [/math] — новое ребро (рис. 4)
рис. 4

Заметим, что в графе [math] G''_1 [/math] рёбер меньше, чем в графе [math] G [/math]. Действительно, вместо ребра [math] e [/math] в [math] G''_1 [/math] есть ребро [math] e_1 [/math] и часть рёбер из графа [math] G [/math] осталась в графе [math] G''_2 [/math]. Аналогично, в графе [math] G''_2 [/math] рёбер меньше, чем в графе [math] G [/math].
Покажем, далее, что в графе [math] G''_1 [/math] и, аналогично, в графе [math] G''_2 [/math] нет подграфов, гомеоморфных [math] K_5 [/math] или [math] K_{3,3} [/math]. Действительно, если в [math] G''_1 [/math] имеется такой подграф, то в этом подграфе присутствует вновь присоединенное ребро, но это ребро [math] e_1 [/math] можно заменить на цепь
[math]a \to b \to ... \to v [/math],
взяв некоторую простую (b, v)-цепь [math] P_2 [/math] в графе [math] G'_2 [/math]. Следовательно, мы получили подграф в [math] G [/math], гомеоморфный [math] K_5 [/math] или [math] K_{3,3} [/math], что невозможно.
Теперь в силу минимальности графа [math] G [/math] графы [math] G''_1 [/math] и [math] G''_2 [/math] планарны. Возьмем укладку графа [math] G''_1 [/math] на плоскости такую, что ребро [math] e_1 = av [/math] лежит на границе внешней грани(ее существование доказывается аналогично существованию такой укладки для вершины графа). Во внешней грани графа [math] G''_1 [/math] возьмем укладку графа [math] G''_2 [/math] такую, что ребро [math] e_2 = vb [/math] лежит па границе внешпей грани (рис. 5).

рис. 5

Отметим, что опять вершина [math] v [/math] представлена на плоскости в двух экземплярах. Очевидно, добавление ребра [math] e = ab [/math] не меняет планарности графа [math] G''_1 U G''_2[/math]. Склеим оба вхождения вершины [math] v [/math] точно так же, как это мы сделали в предыдущем пункте доказательства (рис. 6).

рис. 6

Сотрем затем ранее добавленные ребра [math] e_1 [/math] и [math] e_2 [/math]. В результате мы получим укладку графа [math] G [/math] на плоскости, что невозможно. Утверждение доказано.

Вспомогательные определения и утверждение об одновременно разделяющейся внутренней части

Среди всех укладок графа [math]G'[/math] на плоскости и среди всех циклов [math]C[/math], содержащих [math]a[/math] и [math]b[/math], зафиксируем такую укладку и такой цикл, что внутри области, ограниченной циклом [math]C[/math], лежит максимальное возможное число граней графа [math]G'[/math]. Зафиксируем один из обходов по циклу [math]C[/math] (на рисунках будем рассматривать обход по часовой стрелке по циклу [math]C[/math]). Для вершин [math]u[/math] и [math]v[/math] цикла [math]C[/math] через [math]C[u,v][/math] будем обозначать простую [math](u,v)[/math]-цепь, идущую по циклу [math]C[/math] от [math]u[/math] до [math]v[/math] в направлении обхода цикла. Конечно, [math]C[u,v] \ne C[v,u][/math]. Положим [math]C(u,v) = C[u,v] \setminus[/math] {[math]u,v[/math]}, т.е. [math]C(u,v)[/math] получено из [math]C[u,v][/math] отбрасыванием вершин [math]u[/math] и [math]v[/math].

Определение:
Внешним графом (относительно цикла [math]C[/math]) будем называть подграф графа [math]G'[/math], порождённый всеми вершинами графа [math]G'[/math], лежащими снаружи от цикла [math]C[/math].


Определение:
Внешними компонентами будем называть компоненты связности внешнего графа.

В силу связности графа [math]G'[/math] для любой внешней компоненты должны существовать рёбра в [math]G'[/math], соединяющие её с вершинами цикла [math]C[/math].

Определение:
Внешними частями будем называть внешние компоненты вместе со всеми рёбрами, соединяющими компоненту с вершинами цикла [math]C[/math], и инцидентными им вершинами , либо рёбра графа [math]G'[/math], лежащие снаружи от цикла [math]C[/math] и соединяющие две вершины из [math]C[/math], вместе с инцидентными такому ребру вершинами.
рис. 7
рис. 8
Определение:
Внутренним графом (относительно цикла [math]C[/math]) будем называть подграф графа [math]G'[/math], порождённый всеми вершинами графа [math]G'[/math], лежащими внутри цикла [math]C[/math].


Определение:
Внутренними компонентами будем называть компоненты связности внутреннего графа.

В силу связности графа [math]G'[/math] для любой внутренней компоненты должны существовать рёбра в [math]G'[/math], соединяющие её с вершинами цикла [math]C[/math].

Определение:
Внутренними частями будем называть внутренние компоненты вместе со всеми рёбрами, соединяющими компоненту с вершинами цикла [math]C[/math], и инцидентными им вершинами, либо рёбра графа [math]G'[/math], лежащие внутри цикла [math]C[/math] и соединяющие две вершины из [math]C[/math], вместе с инцидентными такому ребру вершинами

Будем говорить, что внешняя (внутренняя) часть встречает цикл [math]C[/math] в своих точках прикрепления к циклу [math]C[/math].

Лемма:
1) Любая внешняя часть встречает цикл [math]C[/math] точно в двух точках, одна из которых лежит в [math]C(a,b)[/math], а другая — в [math]C(b,a)[/math].
Доказательство:
[math]\triangleright[/math]

Если внешняя часть встречает цикл [math]C[/math] точно в одной точке [math]v[/math], то [math]v[/math] является точкой сочленения графа [math]G[/math], что невозможно.

рис. 9

Таким образом, внешняя часть встречает цикл [math]C[/math] не менее чем в двух точках. Если внешняя часть встречает цикл [math]C[/math] в двух точках из [math]C[a,b][/math] (случай [math]C[b,a][/math] рассматривается аналогично), то в [math]G'[/math] имеется цикл, содержащий внутри себя больше граней, чем цикл [math]C[/math], и проходящий через [math]a[/math] и [math]b[/math], что невозможно.

рис. 10
Итого, внешняя часть встречает цикл [math]C[/math] хотя бы в двух точках, никакие две из которых не лежат в [math]C[a,b][/math] и [math]C[b,a][/math]. То есть ровно одна лежит в [math]C(a,b)[/math] и ровно одна - в [math]C(b,a)[/math].
[math]\triangleleft[/math]
Определение:
Ввиду леммы 1 будем говорить, что любая внешняя часть является [math](a,b)[/math]-разделяющей частью, поскольку она встречает и [math]C(a,b)[/math], и [math]C(b,a)[/math].

Аналогично можно ввести понятие [math](a,b)[/math]-разделяющей внутренней части. Заметим, что внутрення часть может встречать цикл [math]C[/math], вообще говоря, более чем в двух точках, но не менее чем в двух точках.

Лемма:
2) Существует хотя бы одна [math](a,b)[/math]-разделяющая внутренняя часть.
Доказательство:
[math]\triangleright[/math]
Пусть, от противного, таких частей нет. Тогда, выходя из [math]a[/math] внутри области, ограниченной [math]C[/math], и двигаясь вблизи от [math]C[/math] по направлению обхода [math]C[/math] и вблизи от встречающихся внутренних частей, можно уложить ребро [math]e = ab[/math] внутри цикла [math]C[/math], т.е. [math]G[/math] - планарный граф, что невозможно.
рис. 11
[math]\triangleleft[/math]
Лемма:
3) Существует внешняя часть, встречающая [math]C(a,b)[/math] в точке [math]c[/math] и [math]C(b,a)[/math] — в точке [math]d[/math], для которой найдётся внутренняя часть, являющаяся одновременно [math](a,b)[/math]-разделяющей и [math](c,d)[/math]-разделяющей.
рис. 12
Доказательство:
[math]\triangleright[/math]

Пусть, от противного, лемма 3 неверна. Упорядочим [math](a,b)[/math]-разделяющие внутренние части в порядке их прикрепления к циклу [math]C[/math] при движении по циклу от [math]a[/math] до [math]b[/math] и обозначим их соответственно через [math]In_{1},In_{2},...[/math]. Пусть [math]u_{1}[/math] и [math]u_{2}[/math] — первая и последняя вершины из [math]C(a,b)[/math], в которых [math]In_{1}[/math] встречает цикл [math]C[/math], а [math]v_{1}[/math] и [math]v_{2}[/math] — первая и последняя вершины из [math]C(b,a)[/math], в которых [math]In_{1}[/math] встречает цикл [math]C[/math] (возможно, вообще говоря, [math]u_{1} = u_{2}[/math] или [math]v_{1} = v_{2}[/math]). Поскольку лемма 3 неверна, для любой внешней части обе её вершины, в которых она встречает [math]C[/math], лежат либо на [math]C[v_{2},u_{1}][/math], либо на [math]C[u_{2},v_{1}][/math]. Тогда снаружи цикла [math]C[/math] можно провести жорданову кривую [math]P[/math], не пересекая рёбер графа [math]G'[/math], соединяющую [math]v_{2}[/math] с [math]u_{1}[/math].

рис. 13

Поскольку на участках [math]C(u_{1},u_{2})[/math] и [math]C(v_{1},v_{2})[/math] нет точек прикрепления внешних частей, используя жорданову кривую [math]P[/math], внутреннюю часть [math]In_{1}[/math] можно перебросить ("вывернуть" наружу от цикла [math]C[/math]) во внешнюю область цикла [math]C[/math], т.е. уложить её снаружи от цикла [math]C[/math] и сделать её внешней частью.

Аналогично все остальные [math](a,b)[/math]-разделяющие внутренние части можно перебросить во внешнюю область от цикла [math]C[/math]. После этого точно так же, как в доказательстве леммы 2, ребро [math]e = ab[/math] можно уложить внутри цикла [math]C[/math], так как не останется [math](a,b)[/math]-разделяющих внутренних частей. Следовательно, мы получим укладку графа [math]G[/math], что невозможно.
[math]\triangleleft[/math]


Разбор случаев взаимного положения a, b, c, d, u1, u2, v1, v2

Рассмотрим 2 случая.

рис. 7.1

1. Пусть пара вершин [math]\ v_1 [/math] и [math]\ v_2 [/math] является [math](a, b)[/math]-разделяющей.
Тогда, в частности, [math]v_2 \ne a[/math] и [math] v_1 \ne b[/math]. В этом случае граф [math]G[/math] содержит подграф, гомеоморфный [math]\ K_{3,3} [/math] (отметим, что в [math] In [/math] существует простая [math](v_1, v_2)[/math]-цепь) (рис. 7.1).

2. Пусть пара вершин [math]v_1[/math] и [math]v_2[/math] не является [math](a, b)[/math]-разделяющей.
Тогда [math]v_1, v_2[/math] лежат на [math]C[a, b][/math] или на [math]C[b, a][/math]. Без ограничения общности будет считать, что [math]v_1[/math] и [math]v_2[/math] лежат на [math]C[a, b][/math].

2.1. Пусть [math]v_1[/math] и [math]v_2[/math] лежат на [math]C(a, b)[/math], т.е. [math]v_1 \ne b[/math] и [math]v_2 \ne a[/math] (рис. 7.2).

2.1.1 Пусть [math]u_2[/math] лежит на [math]C(d, a)[/math].
Тогда в графе [math]G[/math] имеется подграф, гомеоморфный [math]K_{3,3}[/math] (рис. 7.3).

2.1.2. Пусть [math]u_2 = d[/math].
Тогда во внешней части [math]In[/math] имеется вершина [math]w[/math] и три простые цепи от [math]w[/math] соответственно до [math]d, v_1, v_2[/math], которые в качестве общей точки имеют только точку [math]w[/math]. В этом случае в графе [math]G[/math] имеется подграф, гомеоморфный [math]K_{3,3}[/math] (рис. 7.4).

2.1.3. Пусть [math]u_2[/math] лежит на [math]C(b, d)[/math].
Тогда в графе [math]G[/math] есть подграф, гомеоморфный [math]K_{3,3}[/math] (рис. 7.5).

Теперь рассмотрим случаи, когда хотя бы одна из вершин [math]v_1[/math] и [math]v_2[/math] не лежит на [math]С(a, b)[/math]. Без ограничения общности будем считать, что это вершина [math]v_1[/math], т.е [math]v_1 = b[/math](поскольку [math]v_1[/math] лежит на [math]C[a, b][/math]).

2.2. Пусть [math]v_2 \ne a[/math].

2.2.1. Пусть [math]u_2[/math] лежит на [math]C(d, a)[/math].
Тогда в графе [math]G[/math] есть пограф, гомеоморфный [math]K_{3,3}[/math] (рис. 7.6).

2.2.2. Пусть [math]u_2 = d[/math].
Тогда в графе [math]G[/math] имеется подграф, гомеоморфный [math]K_{3,3}[/math] (рис. 7.7).

2.2.3. Пусть [math]u_2[/math] лежит на [math]C(b, d)[/math].
Тогда в графе [math]G[/math] имеется подграф, гомеоморфный [math]K_{3,3}[/math] (рис. 7.8).

2.3. Пусть [math]v_2 = a[/math] (рис. 7.9).
Рассмотрим теперь пару вершин [math]u_1[/math] и [math]u_2[/math]. Будем считать, что [math]u_1 = c[/math] и [math]u_2 = d[/math], поскольку все другие случаи расположения вершин [math]u_1[/math] и [math]u_2[/math] так же, как были рассмотрены все случаи расположения [math]v_1[/math] и [math]v_2[/math]. Пусть [math]P_1[/math] и [math]P_2[/math] — соответственно кратчайшие простые [math](a, b)[/math]-цепь и [math](c, d)[/math]-цепь по внутренней части [math]In[/math] (рис. 7.10). Заметим, что [math]P_1[/math] и [math]P_2[/math] имеют общую точку.

2.3.1. Пусть цепи [math]P_1[/math] и [math]P_2[/math] имеют более одной общей точки.
Тогда в графе [math]G[/math] есть подграф, гомеоморфный [math]K_{3,3}[/math] (рис. 7.11).

2.3.2. Пусть цепи [math]P_1[/math] и [math]P_2[/math] имеют точно одну общую точку [math]w[/math].
Тогда в графе [math]G[/math] есть подграф, гомеоморфный [math]K_5[/math] (рис. 7.12).

Таким образом, доказано, что в графе [math]G[/math] имеется подграф, гомеоморфный [math]K_{3,3}[/math] или [math]K_5[/math], что противоречит нашему первому предположению.
[math]\triangleleft[/math]

Литература