Алгоритм Форда-Беллмана — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
Строка 1: Строка 1:
 +
{{В разработке}}
 +
 
==Алгоритм==
 
==Алгоритм==
 
:Для заданного взвешенного графа <tex>G = (V, E)</tex> алгоритм находит кратчайшие пути из заданной вершины <tex> s </tex> до всех остальных вершин.<br>
 
:Для заданного взвешенного графа <tex>G = (V, E)</tex> алгоритм находит кратчайшие пути из заданной вершины <tex> s </tex> до всех остальных вершин.<br>
Строка 23: Строка 25:
  
 
:Также релаксацию можно свести к одномерному случаю (одномерный массив будем обозначать <tex>d'</tex>):
 
:Также релаксацию можно свести к одномерному случаю (одномерный массив будем обозначать <tex>d'</tex>):
:<tex>d'[u] \gets \min(d'[u], \; d'[v] + \omega(u,v))</tex>
+
:<tex>d'[u] \gets \min(d'[u], \; d'[v] + \omega(v,u))</tex>
  
 
==Корректность==
 
==Корректность==
Строка 34: Строка 36:
 
: '''Индукционный переход.'''
 
: '''Индукционный переход.'''
 
::Сначала докажем, что <tex> \rho(s, u) \leqslant d'[u]</tex>.
 
::Сначала докажем, что <tex> \rho(s, u) \leqslant d'[u]</tex>.
::Предположим, что <tex>d'[u] + \omega(vu) \geqslant \omega(Path(s \to v) \circ (vu))</tex>, то есть вес любого найденного пути больше чем <tex>\rho(s, u)</tex>, что неверно, следовательно неравенство выполняется.
+
::Предположим, что <tex>d'[u] \geqslant \rho(s,u)</tex>, тогда <tex> d'[u] + \omega(uv) \geqslant \rho(s,u) + \omega(u,v)</tex> то есть вес любого найденного пути не меньше, чем <tex>\rho(s, v)</tex>, что неверно, следовательно неравенство выполняется.
  
  
Строка 59: Строка 61:
  
 
  '''Bellman_Ford(G, s)'''
 
  '''Bellman_Ford(G, s)'''
   '''for''' для каждой <tex>v \in V[G]</tex>
+
   '''for''' для каждой <tex>v \in V</tex>
 
       <tex> d[v] \leftarrow \mathcal {1} </tex>
 
       <tex> d[v] \leftarrow \mathcal {1} </tex>
 
   <tex>d[s] \leftarrow 0 </tex>
 
   <tex>d[s] \leftarrow 0 </tex>
   '''for''' <tex> i \leftarrow 1 </tex> '''to''' <tex> \mid V[G] \mid - 1 </tex>
+
   '''for''' <tex> i \leftarrow 1 </tex> '''to''' <tex> \mid V \mid - 1 </tex>
       '''for''' для каждого ребра <tex> (u, v) \in E[G] </tex>
+
       '''for''' для каждого ребра <tex> (u, v) \in E </tex>
 
             '''if''' <tex>d[v] > d[u] + \omega(u, v) </tex>
 
             '''if''' <tex>d[v] > d[u] + \omega(u, v) </tex>
 
                   '''then''' <tex>d[v] \leftarrow d[u] + \omega(u, v)</tex>
 
                   '''then''' <tex>d[v] \leftarrow d[u] + \omega(u, v)</tex>
   '''for''' для каждого ребра <tex> (u, v) \in E[G] </tex>
+
   '''for''' для каждого ребра <tex> (u, v) \in E </tex>
 
       '''if''' <tex>d[v] > d[u] + \omega(u, v) </tex>
 
       '''if''' <tex>d[v] > d[u] + \omega(u, v) </tex>
 
             '''then''' '''return''' <tex> \mathit false</tex>
 
             '''then''' '''return''' <tex> \mathit false</tex>
Строка 78: Строка 80:
  
 
{{Лемма
 
{{Лемма
|statement=Пусть <tex>G = (V, E) </tex> — взвешенный ориентированный граф, <tex> s </tex> — стартовая вершина.<br>Тогда после завершения <tex> \mid V[G] \mid - 1 </tex> итераций цикла для всех вершин, достижимых из <tex>s</tex>, выполняется равенство <tex> d[v] = \delta (s, v) </tex>.
+
|statement=Пусть <tex>G = (V, E) </tex> — взвешенный ориентированный граф, <tex> s </tex> — стартовая вершина.<br>Тогда после завершения <tex> \mid V \mid - 1 </tex> итераций цикла для всех вершин, достижимых из <tex>s</tex>, выполняется равенство <tex> d[v] = \delta (s, v) </tex>.
 
|proof=:Рассмотрим произвольную вершину <tex>v</tex>, достижимую из <tex>s</tex>.
 
|proof=:Рассмотрим произвольную вершину <tex>v</tex>, достижимую из <tex>s</tex>.
  
  
 
:Пусть <tex>p = \langle v_0,..., v_{k} \rangle </tex>, где <tex>v_0 = s</tex>, <tex>v_{k} = v</tex> — кратчайший ациклический путь из <tex> s </tex> в <tex> v </tex>.<br>
 
:Пусть <tex>p = \langle v_0,..., v_{k} \rangle </tex>, где <tex>v_0 = s</tex>, <tex>v_{k} = v</tex> — кратчайший ациклический путь из <tex> s </tex> в <tex> v </tex>.<br>
:Путь <tex> p </tex> содержит не более <tex> \mid V[G] \mid - 1 </tex> ребер. Поэтому <tex>k \le \mid V[G] \mid - 1</tex>.
+
:Путь <tex> p </tex> содержит не более <tex> \mid V \mid - 1 </tex> ребер. Поэтому <tex>k \le \mid V \mid - 1</tex>.
  
  
Строка 101: Строка 103:
  
 
{{Теорема
 
{{Теорема
|statement=Пусть <tex>G = (V, E) </tex> - взвешенный ориентированный граф, <tex> s </tex> — стартовая вершина.<br>Если граф <tex> G </tex> не содержит отрицательных циклов, достижимых из вершины <tex> s </tex>, то алгоритм возвращает <tex> true </tex> и для всех <tex> v \in V[G] \  d[v] = \delta (s, v)</tex>.<br>Если граф <tex> G </tex> содержит отрицательные циклы, достижимые из вершины <tex> s </tex>, то алгоритм возвращает <tex> false </tex>
+
|statement=Пусть <tex>G = (V, E) </tex> - взвешенный ориентированный граф, <tex> s </tex> — стартовая вершина.<br>Если граф <tex> G </tex> не содержит отрицательных циклов, достижимых из вершины <tex> s </tex>, то алгоритм возвращает <tex> true </tex> и для всех <tex> v \in V \  d[v] = \delta (s, v)</tex>.<br>Если граф <tex> G </tex> содержит отрицательные циклы, достижимые из вершины <tex> s </tex>, то алгоритм возвращает <tex> false </tex>
 
|proof=:Пусть граф <tex> G </tex> не содержит отрицательных циклов, достижимых из вершины <tex> s </tex>.<br>
 
|proof=:Пусть граф <tex> G </tex> не содержит отрицательных циклов, достижимых из вершины <tex> s </tex>.<br>
 
:Тогда если вершина <tex> v </tex> достижима из <tex> s </tex>, то по лемме <tex> d[v] = \delta (s, v)</tex>.<br>
 
:Тогда если вершина <tex> v </tex> достижима из <tex> s </tex>, то по лемме <tex> d[v] = \delta (s, v)</tex>.<br>
Строка 108: Строка 110:
  
 
:Теперь докажем, что алгоритм вернет значение <tex> true </tex>.<br>
 
:Теперь докажем, что алгоритм вернет значение <tex> true </tex>.<br>
:После выполнения алгоритма верно, что для всех <tex> (u, v) \in E[G], \  d[v] = \delta (s, v) \leqslant \delta (s, u) + \omega (u,v) = d[u] + \omega (u,v)</tex>, значит ни одна из проверок не вернет значения <tex> false </tex>.
+
:После выполнения алгоритма верно, что для всех <tex> (u, v) \in E, \  d[v] = \delta (s, v) \leqslant \delta (s, u) + \omega (u,v) = d[u] + \omega (u,v)</tex>, значит ни одна из проверок не вернет значения <tex> false </tex>.
  
  
Строка 122: Строка 124:
  
 
==Сложность==
 
==Сложность==
:Инициализация занимает <tex> \Theta (V) </tex> времени, каждый из <tex> \mid V[G] \mid - 1 </tex> проходов требует <tex> \Theta (E) </tex> времени, обход по всем ребрам для проверки наличия отрицательного цикла занимает <tex>O(E)</tex> времени.<br>Итого алгоритм Беллмана-Форда работает за <tex>O(V E)</tex> времени.
+
:Инициализация занимает <tex> \Theta (V) </tex> времени, каждый из <tex> \mid V \mid - 1 </tex> проходов требует <tex> \Theta (E) </tex> времени, обход по всем ребрам для проверки наличия отрицательного цикла занимает <tex>O(E)</tex> времени.<br>Итого алгоритм Беллмана-Форда работает за <tex>O(V E)</tex> времени.
  
 
== Источники ==
 
== Источники ==

Версия 02:52, 28 февраля 2012

Эта статья находится в разработке!

Алгоритм

Для заданного взвешенного графа [math]G = (V, E)[/math] алгоритм находит кратчайшие пути из заданной вершины [math] s [/math] до всех остальных вершин.
В случае когда в графе [math] G [/math] содержатся отрицательные циклы достижимые из [math] s [/math] алгоритм сообщает, что кратчайших путей не существует.

Введение

Сначала стоит вспомнить формулу для количества путей длины [math]k[/math].
[math] d[k][u] = \sum\limits_{v : vu \; \in E} d[k-1][v] [/math]
Теперь перепишем ее для пути кратчайшей длины. [math]s[/math] — стартовая вершина.
[math] d[k][u] = \min\limits_{v : vu \; \in E}(d[k-1][v] \: + \: \omega[uv])[/math], при этом [math]d[0][s] = 0[/math], а [math]d[0][u] = +\infty [/math]
Лемма:
Если существует кратчайший путь от [math]s[/math] до [math]t[/math],
то [math] \rho(s, \, t) \: = \: \min\limits_{k = 0..n-1} d[k][t][/math]

Псевдокод

Используя приведенные формулы, алгоритм можно реализовать методом динамического программирования.
 for [math](k = 0 \; .. \; n-2)[/math]
     for [math](v \in V)[/math]
         for [math](u : vu \; \in E)[/math]
             [math]d[k+1][u] \gets \min(d[k][u], \; d[k][v] + \omega(u,v))[/math]
Также релаксацию можно свести к одномерному случаю (одномерный массив будем обозначать [math]d'[/math]):
[math]d'[u] \gets \min(d'[u], \; d'[v] + \omega(v,u))[/math]

Корректность

Лемма:
Пусть [math]G = (V, E) [/math] — взвешенный ориентированный граф, [math] s [/math] — стартовая вершина.
Тогда после завершения [math]k[/math] итераций цикла [math]for(k)[/math] выполняется неравенство [math] \rho(s, u) \leqslant d'[u] \leqslant \min\limits_{i = 0..k} d[i][u][/math].
Доказательство:
[math]\triangleright[/math]
Воспользуемся индукцией по [math]k[/math]:
База индукции. При [math]k = 0[/math] выполнено: [math]\rho(s, u) \leqslant +\infty \leqslant +\infty [/math]
Индукционный переход.
Сначала докажем, что [math] \rho(s, u) \leqslant d'[u][/math].
Предположим, что [math]d'[u] \geqslant \rho(s,u)[/math], тогда [math] d'[u] + \omega(uv) \geqslant \rho(s,u) + \omega(u,v)[/math] то есть вес любого найденного пути не меньше, чем [math]\rho(s, v)[/math], что неверно, следовательно неравенство выполняется.


Переходим ко второму неравенству, когда [math]d'[u][/math] изменилось.
[math]d'[u] \leqslant \min\limits_{i = 0..k} d[i][u][/math] выполняется, так как [math]d'[u][/math] могло только уменьшится, то это неравенство выполняется.
Теперь возможно два случая:
  1. [math]\min\limits_{i = 0..k-1} d[i][u] = d[k+1][u][/math]
  2. [math]\min\limits_{i = 0..k-1} d[i][u] = \min\limits_{i = 0..j} \; d[j][u][/math]



Рассмотрим 1 случай:
[math]\min\limits_{i = 0..k-1} d[i][u] = d[k+1][u][/math]
[math]d'[u] \leqslant d'[v] + \omega(vu) \leqslant d[k][v] + \omega(vu) = d[k+1][u][/math]
[math]\vartriangleleft[/math]
2 случай расписывается аналогично.


Таким образом переход выполнен и [math]\rho(s, u) \leqslant d'[u] \leqslant \min\limits_{i = 0..k} d[i][u][/math] выполняется.

[math]\triangleleft[/math]


Реализация алгоритма и ее корректность

Bellman_Ford(G, s)
  for для каждой [math]v \in V[/math]
     [math] d[v] \leftarrow \mathcal {1} [/math]
  [math]d[s] \leftarrow 0 [/math]
  for [math] i \leftarrow 1 [/math] to [math] \mid V \mid - 1 [/math]
     for для каждого ребра [math] (u, v) \in E [/math]
           if [math]d[v] \gt  d[u] + \omega(u, v) [/math]
                 then [math]d[v] \leftarrow d[u] + \omega(u, v)[/math]
  for для каждого ребра [math] (u, v) \in E [/math]
     if [math]d[v] \gt  d[u] + \omega(u, v) [/math]
           then return [math] \mathit false[/math]
  return [math] \mathit true [/math]


В этом алгоритме используется релаксация, в результате которой [math]d[v][/math] уменьшается до тех пор, пока не станет равным [math]\delta(s, v)[/math].
[math]d[v][/math] - оценка веса кратчайшего пути из вершины [math]s[/math] в каждую вершину [math]v \in V[/math].
[math]\delta(s, v)[/math] - фактический вес кратчайшего пути из [math]s[/math] в вершину [math]v[/math].


Лемма:
Пусть [math]G = (V, E) [/math] — взвешенный ориентированный граф, [math] s [/math] — стартовая вершина.
Тогда после завершения [math] \mid V \mid - 1 [/math] итераций цикла для всех вершин, достижимых из [math]s[/math], выполняется равенство [math] d[v] = \delta (s, v) [/math].
Доказательство:
[math]\triangleright[/math]
Рассмотрим произвольную вершину [math]v[/math], достижимую из [math]s[/math].


Пусть [math]p = \langle v_0,..., v_{k} \rangle [/math], где [math]v_0 = s[/math], [math]v_{k} = v[/math] — кратчайший ациклический путь из [math] s [/math] в [math] v [/math].
Путь [math] p [/math] содержит не более [math] \mid V \mid - 1 [/math] ребер. Поэтому [math]k \le \mid V \mid - 1[/math].


Докажем следующее утверждение:
После [math]n : (n \le k)[/math] итераций первого цикла алгоритма, [math]d[v_n] = \delta(s, v_n) [/math]
Воспользуемся индукцией по [math]n[/math]:
База индукции. Перед первой итерацией утверждение очевидно выполнено: [math]d[v_0] = d[s] = \delta(s, s) = 0[/math]
Индукционный переход. Пусть после [math]n : (n \lt k)[/math] итераций, верно что [math]d[v_n] = \delta(s, v_n)[/math]. Так как [math](v_n, v_{n + 1})[/math] принадлежит кратчайшему пути от [math]s[/math] до [math]v[/math], то [math]\delta(s, v_{n+1}) = \delta(s, v_n) + \omega(v_n, v_{n + 1})[/math]. Во время [math]l + 1[/math] итерации релаксируется ребро [math](v_n,v_{n+1})[/math], следовательно по завершению итерации будет выполнено
[math]d[v_{n+1}] \le d[v_n] + \omega(v_n, v_{n+1}) = \delta(s, v_n) + \omega(v_n, v_{n+1}) = \delta(s, v_{n+1})[/math].
Ясно, что [math]d[v_{n+1}] \ge \delta(s, v_{n+1}) [/math], поэтому верно что после [math]l + 1[/math] итерации [math]d[v_{n+1}] = \delta(s, v_{n + 1})[/math].
Индукционный переход доказан.


Итак, выполнены равенства [math]d[v] = d[v_{k}] = \delta (s, v_{k}) = \delta (s, v)[/math].
[math]\triangleleft[/math]


Теорема:
Пусть [math]G = (V, E) [/math] - взвешенный ориентированный граф, [math] s [/math] — стартовая вершина.
Если граф [math] G [/math] не содержит отрицательных циклов, достижимых из вершины [math] s [/math], то алгоритм возвращает [math] true [/math] и для всех [math] v \in V \ d[v] = \delta (s, v)[/math].
Если граф [math] G [/math] содержит отрицательные циклы, достижимые из вершины [math] s [/math], то алгоритм возвращает [math] false [/math]
Доказательство:
[math]\triangleright[/math]
Пусть граф [math] G [/math] не содержит отрицательных циклов, достижимых из вершины [math] s [/math].
Тогда если вершина [math] v [/math] достижима из [math] s [/math], то по лемме [math] d[v] = \delta (s, v)[/math].
Если вершина [math] v [/math] не достижима из [math] s [/math], то [math] d[v] = \delta (s, v) = \mathcal {1}[/math] из несуществования пути.


Теперь докажем, что алгоритм вернет значение [math] true [/math].
После выполнения алгоритма верно, что для всех [math] (u, v) \in E, \ d[v] = \delta (s, v) \leqslant \delta (s, u) + \omega (u,v) = d[u] + \omega (u,v)[/math], значит ни одна из проверок не вернет значения [math] false [/math].


Пусть граф [math] G [/math] содержит отрицательный цикл [math] c = {v_0,...,v_{k}} [/math], где [math] v_0 = v_{k} [/math], достижимый из вершины [math] s [/math].
Тогда [math]\sum\limits_{i=1}^{k} {\omega (v_{i-1}, v_{i})} \lt 0 [/math].
Предположим, что алгоритм возвращает [math] true [/math], тогда для [math] i = 1,...,k [/math] выполняется [math] d[v_{i}] \leqslant d[v_{i-1}] + \omega (v_{i-1}, v_{i}) [/math].
Просуммируем эти неравенства по всему циклу: [math]\sum\limits_{i=1}^{k} {d[v_{i}]} \leqslant \sum\limits_{i=1}^{k} {d[v_{i-1}]} + \sum\limits_{i=1}^{k} {\omega (v_{i-1}, v_{i})} [/math].
Из того, что [math] v_0 = v_{k} [/math] следует, что [math] \sum\limits^{k}_{i=1} {d[v_{i}]} = \sum \limits_{i=1}^{k} {d[v_{i - 1}]} [/math].


Получили, что [math] \sum \limits_{i=1}^{k} {\omega (v_{i-1}, v_{i})} \ge 0 [/math], что противоречит отрицательности цикла [math] c [/math].
[math]\triangleleft[/math]

Сложность

Инициализация занимает [math] \Theta (V) [/math] времени, каждый из [math] \mid V \mid - 1 [/math] проходов требует [math] \Theta (E) [/math] времени, обход по всем ребрам для проверки наличия отрицательного цикла занимает [math]O(E)[/math] времени.
Итого алгоритм Беллмана-Форда работает за [math]O(V E)[/math] времени.

Источники

Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн, К. Алгоритмы: построение и анализ / пер. с англ. — изд. 2-е — М.: Издательский дом «Вильямс», 2009. — с.672 — 676. — ISBN 978-5-8459-0857-5.
Алгоритм Форда-Беллмана