Теорема Редеи-Камиона — различия между версиями
| Строка 5: | Строка 5: | ||
В любом [[Турниры|турнире]] есть [[Гамильтоновы_графы#.D0.9E.D1.81.D0.BD.D0.BE.D0.B2.D0.BD.D1.8B.D0.B5_.D0.BE.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F|гамильтонов путь]]. | В любом [[Турниры|турнире]] есть [[Гамильтоновы_графы#.D0.9E.D1.81.D0.BD.D0.BE.D0.B2.D0.BD.D1.8B.D0.B5_.D0.BE.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F|гамильтонов путь]]. | ||
|proof= | |proof= | ||
| − | Приведем доказательство по индукции по числу вершин в графе. Пусть <tex> n </tex> - количество вершин в графе. | + | Приведем доказательство по индукции по числу вершин в графе. Пусть <tex> n </tex> {{---}} количество вершин в графе. |
<u> ''База индукции:'' </u> | <u> ''База индукции:'' </u> | ||
Версия 10:11, 29 февраля 2012
| Теорема (Редеи-Камиона (для пути)): |
В любом турнире есть гамильтонов путь. |
| Доказательство: |
|
Приведем доказательство по индукции по числу вершин в графе. Пусть — количество вершин в графе. База индукции: Очевидно, для утверждение верно. Индукционный переход: Пусть предположение верно для всех турниров с количеством вершин не более . Рассмотрим турнир с вершинами. Пусть – произвольная вершина турнира . Тогда турнир имеет вершин, значит, в нем есть гамильтонов путь . Одно из ребер или обязательно содержится в . Если ребро , то путь - гамильтонов. Пусть теперь ребро - первая вершина пути , для которой ребро . Если такая вершина существует, то в существует ребро и путь – гамильтонов. Если такой вершины не существует, то путь - гамильтонов. Значит, в любом случае в турнире существует гамильтонов путь, q.e.d. |
| Теорема (Редеи-Камиона (для цикла)): | ||||||||||
В любом сильно связанном турнире есть гамильтонов цикл. | ||||||||||
| Доказательство: | ||||||||||
|
Приведем доказательство по индукции по числу вершин в цикле. Пусть - количество вершин в графе. База индукции:
Индукционный переход:
| ||||||||||
| Лемма (Следствие): |
Турнир является сильно связанным тогда и только тогда, когда он имеет гамильтонов цикл. |
См. также
Литература
- Асанов М., Баранский В., Расин В.: Дискретная математика: Графы, матроиды, алгоритмы
- Ф. Харари: Теория графов