Теорема Бермана — Форчуна — различия между версиями
AndrewD (обсуждение | вклад) |
AndrewD (обсуждение | вклад) |
||
Строка 12: | Строка 12: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | <tex>TAUT = \{\phi | \forall x \, \phi(x)=1\}</tex>. | + | <tex>TAUT = \{\phi</tex> {{---}} булева формула <tex>| \forall x \, \phi(x)=1\}</tex>. |
}} | }} | ||
Строка 18: | Строка 18: | ||
|about=2 | |about=2 | ||
|statement=<tex>TAUT \in coNPC</tex> | |statement=<tex>TAUT \in coNPC</tex> | ||
− | |proof=<tex>\overline {TAUT} = \{\phi | \exists x : \phi(x) \ne 1\} = \{\phi | \overline {\phi} \in SAT\}</tex>, то есть <tex>\overline {TAUT} \in NPC</tex>. Тогда по лемме 1 <tex>TAUT \in coNPC</tex>. | + | |proof=<tex>\overline {TAUT} = \{\phi | \exists x : \phi(x) \ne 1\} = \{\phi | \overline {\phi} \in SAT\}</tex>, то есть <tex>\overline {TAUT} \in NPC</tex>. Тогда по лемме (1) <tex>TAUT \in coNPC</tex>. |
}} | }} | ||
Строка 46: | Строка 46: | ||
Так как <tex>TAUT \in coNPC</tex> и <tex>S \in coNPC</tex>, то <tex>TAUT \le_f S</tex>, то есть <tex>\phi \in TAUT \Leftrightarrow f(\phi) \in S</tex>. Поэтому, если в предыдущей программе заменить все обращения к <tex>memo[\phi]</tex>, на <tex>memo[f(\phi)]</tex>, то полученная программа по прежнему будет разрешать <tex>TAUT</tex>. | Так как <tex>TAUT \in coNPC</tex> и <tex>S \in coNPC</tex>, то <tex>TAUT \le_f S</tex>, то есть <tex>\phi \in TAUT \Leftrightarrow f(\phi) \in S</tex>. Поэтому, если в предыдущей программе заменить все обращения к <tex>memo[\phi]</tex>, на <tex>memo[f(\phi)]</tex>, то полученная программа по прежнему будет разрешать <tex>TAUT</tex>. | ||
− | Оценим необходимый размер <tex>memo</tex>. Можно считать, что <tex>T(f(\phi)) \le q(n)</tex>, где <tex>n = |\phi|</tex>, а <tex>q</tex> {{---}} монотонно возрастающий полином. Тогда <tex>|f(\phi)| \le q(n)</tex>. Так как <tex>S \in SPARSE</tex>, то <tex>|S \cap \Sigma^k| \le p(k)</tex>, где <tex>p</tex> {{---}} полином. Тогда размер <tex>memo</tex> можно оценить сверху: <tex>memo.size() \le \sum\limits_{i=0}^{q(n)}p(i) \le (1+q(n)) \cdot p(q(n)) \le r(n)</tex>, где <tex>r(n)</tex> {{---}} полином. | + | Оценим необходимый размер <tex>memo</tex>. Можно считать, что <tex>T(f(\phi)) \le q(n)</tex>, где <tex>n = |\phi|</tex>, а <tex>q</tex> {{---}} монотонно возрастающий полином. Тогда <tex>|f(\phi)| \le q(n)</tex>. Так как <tex>S \in SPARSE</tex>, то <tex>|S \cap \Sigma^k| \le p(k)</tex>, где <tex>p</tex> {{---}} полином. Можно считать, что <tex>p</tex> монотонно возрастает. Тогда размер <tex>memo</tex> можно оценить сверху: <tex>memo.size() \le \sum\limits_{i=0}^{q(n)}p(i) \le (1+q(n)) \cdot p(q(n)) \le r(n)</tex>, где <tex>r(n)</tex> {{---}} полином. |
<tex>check(\phi, i)</tex> | <tex>check(\phi, i)</tex> | ||
'''if''' <tex>memo[f(\phi)] \ne -1</tex> //(1) | '''if''' <tex>memo[f(\phi)] \ne -1</tex> //(1) | ||
Строка 60: | Строка 60: | ||
Рассмотрим двоичное дерево, получающееся в результате рекурсивных вызовов данной программы. | Рассмотрим двоичное дерево, получающееся в результате рекурсивных вызовов данной программы. | ||
− | Рассмотрим произвольный элемент <tex>memo[i]</tex>. | + | Рассмотрим произвольный элемент <tex>memo[i]</tex>. Заметим, что условие <tex>(1)</tex> в ходе выполнения программы является ложным при обращении к элементу <tex>memo[i]</tex> не более одного раза. Так как всего в <tex>memo</tex> не более <tex>r(n)</tex> элементов, то суммарно за все время выполнения программы условие <tex>(1)</tex> принимает ложное значение не более <tex>r(n)</tex> раз. Отсюда следует, что присваивание <tex>(2)</tex> выполняется не более <tex>r(n)</tex> раз, а значит в дереве не более <tex>r(n)</tex> внутренних вершин. Значит всего в дереве не более <tex>2 \cdot r(n) + 1</tex> вершин, то есть данная программа работает за полиномиальное время. |
− | |||
− | Так как всего в <tex>memo</tex> не более <tex>r(n)</tex> элементов, то суммарно за все время выполнения программы условие <tex>(1)</tex> принимает ложное значение не более <tex> | ||
Итого, данная программа разрешает <tex>TAUT</tex> за полиномиальное время. Значит <tex>P=coNP</tex>, откуда <tex>P=NP</tex>. | Итого, данная программа разрешает <tex>TAUT</tex> за полиномиальное время. Значит <tex>P=coNP</tex>, откуда <tex>P=NP</tex>. | ||
}} | }} |
Версия 14:55, 27 апреля 2012
Лемма (1): |
Доказательство: |
Пусть . Тогда и .Рассмотрим произвольный язык . Тогда . Так как , то , следовательно .Получили, что В обратную сторону доказательство аналогично. и . Значит . |
Определение: |
— булева формула . |
Лемма (2): |
Доказательство: |
, то есть . Тогда по лемме (1) . |
Определение: |
полином . |
Теорема (Махэни, light): |
Доказательство: |
Пусть существует . Разрешим за полином.Для начала напишем программу, разрешающую :if return if return 0 if return 1 return Ответом будет .Так как и , то , то есть . Поэтому, если в предыдущей программе заменить все обращения к , на , то полученная программа по прежнему будет разрешать .Оценим необходимый размер . Можно считать, что , где , а — монотонно возрастающий полином. Тогда . Так как , то , где — полином. Можно считать, что монотонно возрастает. Тогда размер можно оценить сверху: , где — полином.if //(1) return if return 0 if return 1 //(2) if exit return Рассмотрим двоичное дерево, получающееся в результате рекурсивных вызовов данной программы. Рассмотрим произвольный элемент Итого, данная программа разрешает . Заметим, что условие в ходе выполнения программы является ложным при обращении к элементу не более одного раза. Так как всего в не более элементов, то суммарно за все время выполнения программы условие принимает ложное значение не более раз. Отсюда следует, что присваивание выполняется не более раз, а значит в дереве не более внутренних вершин. Значит всего в дереве не более вершин, то есть данная программа работает за полиномиальное время. за полиномиальное время. Значит , откуда . |