Теорема Бейкера — Гилла — Соловэя — различия между версиями
Строка 15: | Строка 15: | ||
---- | ---- | ||
− | '''Существование оракула <tex>B</tex>''' | + | '''Существование оракула <tex>B</tex>.''' |
− | Покажем существование такого оракула <tex>B</tex>, что <tex>\mathrm{P^B} \ne \mathrm{NP^B} </tex>. Пусть <tex>B | + | Покажем существование такого оракула <tex>B</tex>, что <tex>\mathrm{P^B} \ne \mathrm{NP^B} </tex>. Пусть <tex>B</tex> — произвольное множество, а <tex>U_B = \{1^n | \exists x</tex>, что <tex>|x| = n\}</tex>. Ясно, что <tex>\forall B: U_B \in \mathrm{NP^B}</tex> (легко написать программу, проверяющую сертификат). Построим такое множество <tex>B</tex>, что <tex>U_B \not\in \mathrm{P^B}</tex>. |
+ | |||
+ | Рассмотрим последовательность машин Тьюринга <tex>M_i</tex>, имеющих доступ к оракулу языка <tex>B</tex>. Построение множество <tex>B</tex> разделим на счетное число шагов. Будем строить <tex>B</tex> так, чтобы на <tex>i</tex>-м шаге было выполнено: <tex>T(M_i, x) \ge 2^n</tex>. Очевидно, что это утверждение сильнее, чем <tex>U_B \not\in \mathrm{P_B}</tex>. Начнем поэтапно строить множество <tex>B</tex>. | ||
* 0-й шаг: <tex>B \leftarrow \emptyset </tex> | * 0-й шаг: <tex>B \leftarrow \emptyset </tex> | ||
* <tex>i</tex>-й шаг. Будем считать шаги с 0-го по <tex>(i-1)</tex>-й сделаны. Тогда в <tex>B</tex> на данном этапе содержится конечное число слов. Пусть самое длинное из них состоит из <tex>(n-1)</tex>-го символа. Запустим машину <tex>M_i</tex> на входе <tex>1^n</tex> на <tex>2^n</tex> шагов. Когда <tex>M_i</tex> требуется ответ оракула языка <tex>B</tex> о слове <tex>x</tex>, происходит следующее: | * <tex>i</tex>-й шаг. Будем считать шаги с 0-го по <tex>(i-1)</tex>-й сделаны. Тогда в <tex>B</tex> на данном этапе содержится конечное число слов. Пусть самое длинное из них состоит из <tex>(n-1)</tex>-го символа. Запустим машину <tex>M_i</tex> на входе <tex>1^n</tex> на <tex>2^n</tex> шагов. Когда <tex>M_i</tex> требуется ответ оракула языка <tex>B</tex> о слове <tex>x</tex>, происходит следующее: |
Версия 11:36, 29 апреля 2012
Теорема: |
Существуют такие оракулы и , что и . |
Доказательство: |
Существование оракула .Покажем существование такого оракула . является -полным языком , что . Рассмотрим язык булева формула с кванторами .
Следовательно, .Существование оракула .Покажем существование такого оракула , что . Пусть — произвольное множество, а , что . Ясно, что (легко написать программу, проверяющую сертификат). Построим такое множество , что .Рассмотрим последовательность машин Тьюринга , имеющих доступ к оракулу языка . Построение множество разделим на счетное число шагов. Будем строить так, чтобы на -м шаге было выполнено: . Очевидно, что это утверждение сильнее, чем . Начнем поэтапно строить множество .
Но могла остановится раньше, чем за шагов и вернуть какое-либо значение.
Если Следовательно, допускает слово , то в нет слова . Если отклоняет слово , то в содержится слово , причем . Противоречие. не может решить язык за время меньшее . |