Теорема о непринадлежности XOR классу AC⁰ — различия между версиями
Строка 14: | Строка 14: | ||
# Нижний уровень схемы состоит из <tex>\land</tex> элементов с единичной степенью входа. | # Нижний уровень схемы состоит из <tex>\land</tex> элементов с единичной степенью входа. | ||
− | Построим итеративный процесс, на каждом шаге которого можно с высокой вероятностью на <tex>1</tex> уменьшить глубину схемы, сохранив при этом число входов. Пусть <tex>n~-</tex> длина входной цепочки. Выберем минимальное целое <tex>b</tex> так, чтобы <tex>n^b</tex> было не меньше, чем число элементов в схеме. На каждом шаге случайным образом будем назначать все большее число переменных. Обозначим <tex>n_i~-</tex> число неназначенных переменных на <tex>i</tex>-ом шаге. Тогда на <tex>i + 1</tex>-ом шаге число назначенных переменных будет <tex>n_i - \sqrt{n_i}</tex>. Возьмем <tex>k_i=10b2^i.</tex> | + | Построим итеративный процесс, на каждом шаге которого можно с высокой вероятностью на <tex>1</tex> уменьшить глубину схемы, сохранив при этом число входов. Пусть <tex>n~-</tex> длина входной цепочки, а <tex>d~-</tex> глубина схемы. Выберем минимальное целое <tex>b</tex> так, чтобы <tex>n^b</tex> было не меньше, чем число элементов в схеме. На каждом шаге случайным образом будем назначать все большее число переменных. Обозначим <tex>n_i~-</tex> число неназначенных переменных на <tex>i</tex>-ом шаге. Тогда на <tex>i + 1</tex>-ом шаге число назначенных переменных будет <tex>n_i - \sqrt{n_i}</tex>. Возьмем <tex>k_i=10b2^i.</tex> |
+ | Покажем, что после <tex>i+1</tex>-ого шага глубина схемы будет <tex>d - i</tex>, причем наибольшая степень входа элемента на нижнем уровне будет <tex>k_i</tex>. | ||
}} | }} |
Версия 21:11, 20 мая 2012
Лемма: |
Пусть представима в виде k-ДНФ, а случайная выборка случайных бит входа. Тогда при верно, что не представима в виде s-КНФ . |
Теорема: |
. |
Доказательство: |
Рассмотрим произвольную схему из . Не умаляя общности, будем считать, что:
Построим итеративный процесс, на каждом шаге которого можно с высокой вероятностью на Покажем, что после уменьшить глубину схемы, сохранив при этом число входов. Пусть длина входной цепочки, а глубина схемы. Выберем минимальное целое так, чтобы было не меньше, чем число элементов в схеме. На каждом шаге случайным образом будем назначать все большее число переменных. Обозначим число неназначенных переменных на -ом шаге. Тогда на -ом шаге число назначенных переменных будет . Возьмем -ого шага глубина схемы будет , причем наибольшая степень входа элемента на нижнем уровне будет . |