QpmtnriLmax — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 6: Строка 6:
  
 
- Каждое задание имеет своё времени выпуска <tex>r_i</tex> и срок завершения(дедлайн) <tex>d_i</tex>.
 
- Каждое задание имеет своё времени выпуска <tex>r_i</tex> и срок завершения(дедлайн) <tex>d_i</tex>.
 +
 +
==Алгоритм решения==
 +
[[Файл:Figure_5.2.png|400px|thumb|right|Рисунок 1]]
  
 
Применим бинарный поиск для общего решения задачи. Сведем задачу к поиску потока сети.
 
Применим бинарный поиск для общего решения задачи. Сведем задачу к поиску потока сети.
Строка 13: Строка 16:
 
Также определим <tex> I_K := [t_{K-1}, t_K],\  T_K = t_K-t_{K-−1} </tex> для <tex> K = 2,..., r </tex>.
 
Также определим <tex> I_K := [t_{K-1}, t_K],\  T_K = t_K-t_{K-−1} </tex> для <tex> K = 2,..., r </tex>.
  
Далее мы расширяем сеть, показанную на рисунке 5.2 {{TODO | t = ДОБАВИТЬ_Рисунки {5.2} 5.9: Расширение сети.}} следующим образом:
+
Далее мы расширяем сеть, показанную на рисунке 1 {{TODO | t = ДОБАВИТЬ_Рисунок 5.9: Расширение сети.}} следующим образом:
  
 
<tex>I_K</tex> - произвольный интервал узел на рисунке, обозначим через <tex> J_{i_1}, J_{i_2}, . . . , J_{i_s} </tex> набор предшественников узла <tex>I_K</tex>.
 
<tex>I_K</tex> - произвольный интервал узел на рисунке, обозначим через <tex> J_{i_1}, J_{i_2}, . . . , J_{i_s} </tex> набор предшественников узла <tex>I_K</tex>.
Строка 39: Строка 42:
 
//===================================================================================================================
 
//===================================================================================================================
  
Потому что (5.10) справедливо для всех К частичной работы с требования к обработке Xik могут быть запланированы в ИК с уровнем алгоритма. Проблема Q | pmtn; п | Cmax, которая представляет собой частный случай Q | pmtn; п | Lmax, могут быть решены более эффективно. Labetoulle, Lawler, Ленстра и Rinnooy Кан [133] разработали О (п § п + тп)-алгоритм для этого специальные случае. Кроме того, проблема Q | pmtn | Lmax может быть решена в О (п § п + тп) шагов. Это вытекает из следующих соображений. Проблема Q | pmtn; п | Cmax эквивалентно нахождению наименьшего T 0, , что проблема с временными окнами [г, т] (г = 1, ..., п) имеет возможности решение. С другой стороны, проблема Q | pmtn | Lmax эквивалентна нахождения наименьшего T 0 такое, что проблема с временными окнами [0, D + T] или с временными окнами [-T, ди] имеет допустимое решение. Таким образом, проблемы <tex>Q | pmtn; ri | Cmax</tex> и <tex>Q | pmtn | Lmax</tex> симметричны.
+
Потому что (5.10) справедливо для всех К частичной работы с требования к обработке Xik могут быть запланированы в ИК с уровнем алгоритма.
 +
 
 +
Задача <tex>Q | pmtn; ri | Cmax</tex>, которая представляет собой частный случай <tex>Q | pmtn; ri | Lmax</tex>, может быть решена более эффективно. Labetoulle, Lawler, Lenstra, and Rinnooy Kan разработали алгоритм работающий за <tex> O(n log(n) + mn) </tex> специально для этого случая.
 +
 
 +
Задача <tex>Q | pmtn | Lmax</tex> может быть решена за <tex> O(n log(n) + mn) </tex> шагов. Это вытекает из следующих соображений:
 +
 
 +
Решение <tex>Q | pmtn; ri | Cmax</tex> эквивалентно нахождению наименьшего <tex>T \ge 0</tex>, что проблема с временными окнами [г, т] (г = 1, ..., п) имеет возможности решение.
 +
 
 +
С другой стороны, решение <tex>Q | pmtn | Lmax</tex> эквивалентно нахождению такого наименьшего <tex>T \ge 0</tex>, что проблема с временными окнами [0, D + T] или с временными окнами [-T, ди] имеет допустимое решение.
 +
 
 +
Таким образом, задачи <tex>Q | pmtn; ri | Cmax</tex> и <tex>Q | pmtn | Lmax</tex> симметричны.

Версия 11:47, 22 мая 2012

Эта статья находится в разработке!


Постановка задачи

Рассмотрим задачу нахождения расписания со следующим свойством:

- Каждое задание имеет своё времени выпуска [math]r_i[/math] и срок завершения(дедлайн) [math]d_i[/math].

Алгоритм решения

Рисунок 1

Применим бинарный поиск для общего решения задачи. Сведем задачу к поиску потока сети.

Пусть [math] t_1 \lt t_2 \lt ...\lt t_r [/math] упорядоченная последовательности всех значений [math]r_i[/math] и [math]d_i[/math].

Также определим [math] I_K := [t_{K-1}, t_K],\ T_K = t_K-t_{K-−1} [/math] для [math] K = 2,..., r [/math].

Далее мы расширяем сеть, показанную на рисунке 1 TODO: ДОБАВИТЬ_Рисунок 5.9: Расширение сети. следующим образом:

[math]I_K[/math] - произвольный интервал узел на рисунке, обозначим через [math] J_{i_1}, J_{i_2}, . . . , J_{i_s} [/math] набор предшественников узла [math]I_K[/math].

Тогда замененная нами подсеть определяется как [math] I_K, J_{i_1}, J_{i_2}, . . . , J_{i_s} [/math], которая показана на рисунке 5.9 (а), расширение сети показано на рисунке 5.9 (б).

Cчитаем, что машины индексируются в порядке невозрастания скоростей [math] s_1 \ge s_2 \ge . . . \ge s_m [/math], кроме того [math]s_{m+1} = 0[/math].

Расширенная подсеть строится путем добавления к вершинам [math] I_K, J_{i_1}, J_{i_2}, . . . , J_{i_s} [/math] вершин [math](K, 1), (K, 2), . . . (K, m) [/math].

При [math]j = 1,..., m [/math], есть дуги от [math](K, j)[/math] до [math]I_K[/math] with capacity [math] j(s_j - s_{j+1}) T_K [/math] и для всех [math]ν = 1,. . . , s[/math] и [math]j = 1,. . ., m[/math] существует дуга из [math]J_{i_ν}[/math] в [math](K, J)[/math] with capacity [math] (s_j - s_{j+1}) T_K [/math].

Для каждого [math]I_K[/math] у нас есть такие расширения. Кроме того, мы сохраняем дуги от [math]s[/math] до [math]J_i[/math] и мощностью [math]p_i[/math] дуг из [math]I_K[/math] в [math]t[/math] мощностью [math]S_mT_K[/math] (см. рисунок 5.2). Сеть построена таким образом, называется расширенной сетью.


TODO: Теоремы 5.9 Следующие свойства эквивалентны:

(А) Существует допустимое расписание.

(Б) В расширенной сети существует поток от s до t со значением [math]\sum\limits_{i=1}^{n} p_i[/math]

Из-за максимального потока в расширенной сети могут быть рассчитаны в [math]O (m n^3)[/math] шагов, возможность проверки может быть сделано с такой же сложности.

Для решения задачи [math]Q|pmtn; r_{i}|L_{max}[/math] мы используем бинарный поиск. Это дает [math]\varepsilon[/math]-приближении алгоритм со сложностью [math]O (mn^3(log(n) + log(1 / \varepsilon) + log (\max\limits_{i=1}^{n} p_i)) [/math], потому что [math]L_{max}[/math], конечно, ограниченной [math]n \max\limits_{i=1}^{n}p_i[/math], если [math]s_1 = 1[/math].

//===================================================================================================================

Потому что (5.10) справедливо для всех К частичной работы с требования к обработке Xik могут быть запланированы в ИК с уровнем алгоритма.

Задача [math]Q | pmtn; ri | Cmax[/math], которая представляет собой частный случай [math]Q | pmtn; ri | Lmax[/math], может быть решена более эффективно. Labetoulle, Lawler, Lenstra, and Rinnooy Kan разработали алгоритм работающий за [math] O(n log(n) + mn) [/math] специально для этого случая.

Задача [math]Q | pmtn | Lmax[/math] может быть решена за [math] O(n log(n) + mn) [/math] шагов. Это вытекает из следующих соображений:

Решение [math]Q | pmtn; ri | Cmax[/math] эквивалентно нахождению наименьшего [math]T \ge 0[/math], что проблема с временными окнами [г, т] (г = 1, ..., п) имеет возможности решение.
С другой стороны, решение [math]Q | pmtn | Lmax[/math] эквивалентно нахождению такого наименьшего [math]T \ge 0[/math], что проблема с временными окнами [0, D + T] или с временными окнами [-T, ди] имеет допустимое решение.

Таким образом, задачи [math]Q | pmtn; ri | Cmax[/math] и [math]Q | pmtn | Lmax[/math] симметричны.