Классы RP и coRP — различия между версиями
(→Теорема об эквивалентности определений) |
м (→Теорема об эквивалентности определений) |
||
Строка 29: | Строка 29: | ||
Рассмотрим язык <tex>L \in \mathrm{RP_{weak}}</tex>. Этому языку соответсвует программа <tex>m_{\mathrm{RP_{weak}}}</tex>. Для доказательства утверждения необходимо написать программу <tex>m_{\mathrm{RP}}</tex>, которая будет удолетворять ограничениям сложностного класса <tex>\mathrm{RP}</tex>. | Рассмотрим язык <tex>L \in \mathrm{RP_{weak}}</tex>. Этому языку соответсвует программа <tex>m_{\mathrm{RP_{weak}}}</tex>. Для доказательства утверждения необходимо написать программу <tex>m_{\mathrm{RP}}</tex>, которая будет удолетворять ограничениям сложностного класса <tex>\mathrm{RP}</tex>. | ||
<tex>m_{\mathrm{RP}}(x)</tex> | <tex>m_{\mathrm{RP}}(x)</tex> | ||
− | |||
− | |||
'''for''' <tex>i = 1 \ldots k</tex> // <tex>k</tex> будет определено позже | '''for''' <tex>i = 1 \ldots k</tex> // <tex>k</tex> будет определено позже | ||
'''if''' <tex>m_{\mathrm{RP_{weak}}}(x)</tex> | '''if''' <tex>m_{\mathrm{RP_{weak}}}(x)</tex> | ||
− | '''then''' <tex> | + | '''then return''' <tex>1</tex> |
− | + | '''return''' <tex>0</tex> | |
− | '''return''' <tex> | + | Если слово <tex>x \notin L</tex>, то <tex>m_{\mathrm{RP_{weak}}}(x)</tex> всегда возвращает <tex>0</tex>. Тогда <tex>P(m_{\mathrm{RP}}(x) = 0) = 1</tex>, при <tex>x \notin L</tex>. Если хотя бы один вызов программы <tex>m_{\mathrm{RP_{weak}}}(x)</tex> вернёт <tex>1</tex>, то слово <tex>x \in L</tex>. Вероятность ошибки программы <tex>m_{\mathrm{RP}}</tex> равна <tex>(1-\frac{1}{q(|x|)})^k</tex>, то есть программа <tex>m_{\mathrm{RP_{weak}}}</tex> ошиблась на всех вызовах. <tex>k</tex> надо выбрать таким, что вероятность ошибки программы <tex>m_{\mathrm{RP}}</tex> при <tex>x \in L</tex> была меньше <tex>\frac {1}{2}</tex>. Получается неравенство <tex>(1-\frac{1}{q(|x|)})^k < \frac{1}{2}</tex>. Логарифмируя, получаем: <tex>k\ ln(1-\frac{1}{q(|x|)}) < ln(\frac{1}{2})</tex>. Разложив логарифм в ряд Тейлора, получаем <tex>k(-\frac{1}{q(|x|)} + o(\frac{1}{q(|x|)})) < -ln(2)</tex>. Отсюда <tex>k > q(|x|)ln(2)</tex>.<br/> |
− | Если слово <tex>x \notin L</tex>, то <tex>m_{\mathrm{RP_{weak}}}(x)</tex> всегда возвращает <tex> | ||
<tex>\mathrm{RP} \subset \mathrm{RP_{strong}}\colon</tex><br/> | <tex>\mathrm{RP} \subset \mathrm{RP_{strong}}\colon</tex><br/> | ||
Доказательство аналогично предыдущему пункту. В этом случае <tex>k</tex> необходимо выбрать таким, что должно выполняться неравенство <tex>(\frac{1}{2})^k < \frac{1}{q(|x|)}</tex>. Прологарифмировав и сократив на <tex>ln(\frac{1}{2})</tex>, получаем, что <tex>k > q(|x|)</tex>. | Доказательство аналогично предыдущему пункту. В этом случае <tex>k</tex> необходимо выбрать таким, что должно выполняться неравенство <tex>(\frac{1}{2})^k < \frac{1}{q(|x|)}</tex>. Прологарифмировав и сократив на <tex>ln(\frac{1}{2})</tex>, получаем, что <tex>k > q(|x|)</tex>. |
Версия 22:18, 23 мая 2012
Определения
Определение: |
Сложностный класс
| состоит из языков таких, что существует программа , которая работает за полиномиальное время, и:
Определение: |
Сложностный класс
| состоит из языков таких, что существует программа , которая работает за полиномиальное время, и:
Определение: |
Сложностный класс
| состоит из языков таких, что существует программа , которая работает за полиномиальное время, и:
Теорема об эквивалентности определений
Теорема: |
Доказательство: |
for // будет определено позже if then return return Если слово |