Теорема Бейкера — Гилла — Соловэя — различия между версиями
(→Теорема) |
(→Теорема) |
||
Строка 30: | Строка 30: | ||
Пусть <tex>B</tex> — произвольное множество, а <tex>U_B = \{1^n | \exists x \in B : |x| = n\}</tex>. Ясно, что <tex>\forall B \Rightarrow U_B \in \mathrm{NP^B}</tex> (сертификатом будет слово нужной длины из <tex>B</tex>). Построим такое множество <tex>B</tex>, что <tex>U_B \not\in \mathrm{P^B}</tex>. | Пусть <tex>B</tex> — произвольное множество, а <tex>U_B = \{1^n | \exists x \in B : |x| = n\}</tex>. Ясно, что <tex>\forall B \Rightarrow U_B \in \mathrm{NP^B}</tex> (сертификатом будет слово нужной длины из <tex>B</tex>). Построим такое множество <tex>B</tex>, что <tex>U_B \not\in \mathrm{P^B}</tex>. | ||
− | Пронумеруем некоторым образом все машины Тьюринга, имеющие доступ к оракулу языка <tex>B</tex>, и рассмотрим получившуюся последовательность <tex>M_i</tex>. Построение множества <tex>B</tex> разделим на счетное число стадий, на каждой из которых множество пополнится конечным числом элементов. Будем строить <tex>B</tex> так, чтобы на <tex>i</tex>-й стадии было выполнено: <tex>M_i</tex> не | + | Пронумеруем некоторым образом все машины Тьюринга, имеющие доступ к оракулу языка <tex>B</tex>, и рассмотрим получившуюся последовательность <tex>M_i</tex>. Построение множества <tex>B</tex> разделим на счетное число стадий, на каждой из которых множество пополнится конечным числом элементов. Будем строить <tex>B</tex> так, чтобы на <tex>i</tex>-й стадии было выполнено: <tex>M_i</tex> не разрешает язык <tex>U_B</tex> за время не большее, чем <tex>2^{n-1}</tex>. Очевидно, что это утверждение сильнее, чем <tex>U_B \not\in \mathrm{P^B}</tex>. |
* 0-я стадия: <tex>B \leftarrow \emptyset </tex>. | * 0-я стадия: <tex>B \leftarrow \emptyset </tex>. | ||
* <tex>i</tex>-я стадия. Стадии с 0-й по <tex>(i-1)</tex>-ю пройдены, <tex>B</tex> — конечное множество слов. Пусть самое длинное из них состоит из <tex>(n-1)</tex>-го символа. Запустим машину <tex>M_i</tex> на входе <tex>1^n</tex> на <tex>2^{n-1}</tex> шагов. Когда <tex>M_i</tex> требуется ответ оракула языка <tex>B</tex> о слове <tex>x</tex>, будем определять принадлежность этого слова к <tex>B</tex> следующим образом: | * <tex>i</tex>-я стадия. Стадии с 0-й по <tex>(i-1)</tex>-ю пройдены, <tex>B</tex> — конечное множество слов. Пусть самое длинное из них состоит из <tex>(n-1)</tex>-го символа. Запустим машину <tex>M_i</tex> на входе <tex>1^n</tex> на <tex>2^{n-1}</tex> шагов. Когда <tex>M_i</tex> требуется ответ оракула языка <tex>B</tex> о слове <tex>x</tex>, будем определять принадлежность этого слова к <tex>B</tex> следующим образом: | ||
Строка 36: | Строка 36: | ||
** если принадлежность <tex>x</tex> множеству <tex>B</tex> не установлена ранее, то далее считаем, что <tex>x \not\in B</tex>. | ** если принадлежность <tex>x</tex> множеству <tex>B</tex> не установлена ранее, то далее считаем, что <tex>x \not\in B</tex>. | ||
− | Но <tex>M_i</tex> могла остановится раньше, чем за <tex>2^{n-1}</tex> шагов и вернуть какое-либо значение. Так как <tex>B</tex> строится с условием <tex>M_i</tex> не | + | Но <tex>M_i</tex> могла остановится раньше, чем за <tex>2^{n-1}</tex> шагов и вернуть какое-либо значение. Так как <tex>B</tex> строится с условием <tex>M_i</tex> не разрешает <tex>U_B</tex> за время <tex>2^{n-1}</tex>, то решение машины о принадлежности слова должно быть неверным: |
* если <tex>M_i</tex> приняла слово, то исключим из <tex>B</tex> все слова вида <tex>\{0,1\}^n</tex>; | * если <tex>M_i</tex> приняла слово, то исключим из <tex>B</tex> все слова вида <tex>\{0,1\}^n</tex>; | ||
* Если <tex>M_i</tex> отклонила слово, то выберем слово <tex>x</tex> длины <tex>n</tex>, принадлежность которого <tex>B</tex> еще не определено. Добавим <tex>x</tex> в <tex>B</tex>. Такое слово всегда найдется, так как на предыдущий шагах мы могли сделать не более, чем <tex>2^n-1</tex> запросов к оракулу (то есть определить принадлежность <tex>B</tex> не более <tex>2^n-1</tex> слов длины <tex>n</tex>), а всего слов длины n <tex>2^n</tex>. | * Если <tex>M_i</tex> отклонила слово, то выберем слово <tex>x</tex> длины <tex>n</tex>, принадлежность которого <tex>B</tex> еще не определено. Добавим <tex>x</tex> в <tex>B</tex>. Такое слово всегда найдется, так как на предыдущий шагах мы могли сделать не более, чем <tex>2^n-1</tex> запросов к оракулу (то есть определить принадлежность <tex>B</tex> не более <tex>2^n-1</tex> слов длины <tex>n</tex>), а всего слов длины n <tex>2^n</tex>. | ||
Строка 42: | Строка 42: | ||
Во множестве <tex>B</tex> на каждой стадии содержится конечное число элементов, так как на каждой стадии в <tex>B</tex> может быть добавлено не более чем <tex>2^{n-1}+1</tex> слов. | Во множестве <tex>B</tex> на каждой стадии содержится конечное число элементов, так как на каждой стадии в <tex>B</tex> может быть добавлено не более чем <tex>2^{n-1}+1</tex> слов. | ||
− | Из построения получаем, что никакая машина не может | + | Из построения получаем, что никакая машина не может разрешить <tex>U_B</tex> за время <tex>2^{n-1}</tex>. Следовательно, <tex>U_B \not\in \mathrm{P_B}</tex>. |
}} | }} |
Версия 23:03, 23 мая 2012
Теорема
Теорема: |
Существуют такие оракулы и , что и . |
Доказательство: |
Существование оракула Рассмотрим PS-полный язык .
Существование оракула Пусть — произвольное множество, а . Ясно, что (сертификатом будет слово нужной длины из ). Построим такое множество , что .Пронумеруем некоторым образом все машины Тьюринга, имеющие доступ к оракулу языка , и рассмотрим получившуюся последовательность . Построение множества разделим на счетное число стадий, на каждой из которых множество пополнится конечным числом элементов. Будем строить так, чтобы на -й стадии было выполнено: не разрешает язык за время не большее, чем . Очевидно, что это утверждение сильнее, чем .
Но могла остановится раньше, чем за шагов и вернуть какое-либо значение. Так как строится с условием не разрешает за время , то решение машины о принадлежности слова должно быть неверным:
Во множестве Из построения получаем, что никакая машина не может разрешить на каждой стадии содержится конечное число элементов, так как на каждой стадии в может быть добавлено не более чем слов. за время . Следовательно, . |
Следствия
Утверждение: |
Методом диагонализации нельзя доказать, что . |
Утверждение: |
Никакой метод, который использует операции релятивизации, не может сказать равны ли и . |