Натуральные числа — различия между версиями
(→Деление чисел с остатком) |
(→Деление чисел с остатком) |
||
Строка 5: | Строка 5: | ||
Если натуральное число <math>n\,</math> не делится на натуральное число <math>m\,</math>, т.е. не существует такого натурального числа <math>k\,</math> , что <math>n = m\,k, то деление называется делением с остатком. | Если натуральное число <math>n\,</math> не делится на натуральное число <math>m\,</math>, т.е. не существует такого натурального числа <math>k\,</math> , что <math>n = m\,k, то деление называется делением с остатком. | ||
− | + | a = b\,q + r,\quad 0 \leqslant r < b \quad (q \in \mathbb{Z},\,r \in \mathbb{Z}).</math> | |
Формула деления с остатком: <math>n = m\,k + r, где <math>n\,</math> - делимое, <math>m\,</math> - делитель, <math>k\,</math> - частное, <math>r\,</math> - остаток, причем 0 < r < m | Формула деления с остатком: <math>n = m\,k + r, где <math>n\,</math> - делимое, <math>m\,</math> - делитель, <math>k\,</math> - частное, <math>r\,</math> - остаток, причем 0 < r < m |
Версия 15:05, 30 июня 2010
Эта статья находится в разработке!
Содержание
Деление чисел с остатком
Если натуральное число
не делится на натуральное число , т.е. не существует такого натурального числа , чтоФормула деления с остатком:
- делимое, - делитель, - частное, - остаток, причем 0 < r < mЛюбое число можно представить в виде: <math>n = 2k + r , где остаток r = 0 или r = 1
Любое число можно представить в виде: n = 4k + r , где остаток r = 0 или r = 1 или r = 2 или r = 3 Любое число можно представить в виде: n = mk + r, где остаток r принимает значения от 0 до m - 1