Натуральные числа — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Деление чисел с остатком)
(Деление чисел с остатком)
Строка 5: Строка 5:
 
Если натуральное число <math>n\,</math> не делится на натуральное число <math>m\,</math>, т.е. не существует такого натурального числа <math>k\,</math> , что <math>n = m\,k,</math> то деление называется '''делением с остатком'''.
 
Если натуральное число <math>n\,</math> не делится на натуральное число <math>m\,</math>, т.е. не существует такого натурального числа <math>k\,</math> , что <math>n = m\,k,</math> то деление называется '''делением с остатком'''.
  
'''Формула деления с остатком''': <math>n = m\,k + r,</math> где <math>n\,</math> - делимое, <math>m\,</math> - делитель, <math>k\,</math> - частное, <math>r\,</math> - остаток, причем 0 < r < m
+
'''Формула деления с остатком''': <math>n = m\,k + r,</math> где <math>n\,</math> - делимое, <math>m\,</math> - делитель, <math>k\,</math> - частное, <math>r\,</math> - остаток, причем \quad 0 \leqslant r < m \quad

Версия 15:21, 30 июня 2010

Эта статья находится в разработке!

Деление чисел с остатком

Если натуральное число [math]n\,[/math] не делится на натуральное число [math]m\,[/math], т.е. не существует такого натурального числа [math]k\,[/math] , что [math]n = m\,k,[/math] то деление называется делением с остатком.

Формула деления с остатком: [math]n = m\,k + r,[/math] где [math]n\,[/math] - делимое, [math]m\,[/math] - делитель, [math]k\,[/math] - частное, [math]r\,[/math] - остаток, причем \quad 0 \leqslant r < m \quad