PCP-система — различия между версиями
Строка 11: | Строка 11: | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | '''Randomness complexity'''(вероятностной сложностью) <tex>r(n)</tex> верификатора <tex>V</tex> называется число случайных битов, которое он использует за всё время работы со входом длины <tex>n</tex>. | + | '''Randomness complexity''' (вероятностной сложностью) <tex>r(n)</tex> верификатора <tex>V</tex> называется число случайных битов, которое он использует за всё время работы со входом длины <tex>n</tex>. |
}} | }} | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | '''Query complexity'''( | + | '''Query complexity''' (запросной сложностью) <tex>q(n)</tex> верификатора <tex>V</tex> называется число запросов битов из <tex>\pi</tex>, которое он отсылает за всё время работы со входом длины <tex>n</tex>. |
}} | }} | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | Верификатор <tex>V</tex> называется '''non-adaptive'''(неадаптивным), если при отправке запроса не использует ответы на предыдущие. Иными словами, его работа не изменится, если все свои запросы он отправит одновременно. | + | Верификатор <tex>V</tex> называется '''non-adaptive''' (неадаптивным), если при отправке запроса не использует ответы на предыдущие. Иными словами, его работа не изменится, если все свои запросы он отправит одновременно. |
}} | }} | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | Сложностный класс <tex>\mathrm{PCP}_{c(n), s(n)}[r(n), q(n)]</tex> является объединением языков всех <tex>L</tex>, для которых существует <tex>\mathrm{PCP}</tex>-система над бинарным алфавитом с полнотой <tex>c(n)</tex> и обоснованностью <tex>s(n)</tex>, в которой верификатор <tex>V</tex> неадаптивный, работает за полиномиальное время и имеет вероятностную и | + | Сложностный класс <tex>\mathrm{PCP}_{c(n), s(n)}[r(n), q(n)]</tex> является объединением языков всех <tex>L</tex>, для которых существует <tex>\mathrm{PCP}</tex>-система над бинарным алфавитом с полнотой <tex>c(n)</tex> и обоснованностью <tex>s(n)</tex>, в которой верификатор <tex>V</tex> неадаптивный, работает за полиномиальное время и имеет вероятностную и запросную сложности соответственно <tex>r(n)</tex> и <tex>q(n)</tex>.<br/> |
Часто <tex>\mathrm{PCP}_{1, {}^1/{}_2}[r(n), q(n)]</tex> обозначают как <tex>\mathrm{PCP}[r(n), q(n)]</tex>. | Часто <tex>\mathrm{PCP}_{1, {}^1/{}_2}[r(n), q(n)]</tex> обозначают как <tex>\mathrm{PCP}[r(n), q(n)]</tex>. | ||
}} | }} |
Версия 16:53, 3 июня 2012
PCP(probabilistically checkable proof) - вид доказательства, проверяемого рандомизированным алгоритмом, использующим ограниченное число случайных бит и читающим ограниченное число бит доказательства. Такой алгоритм должен с достаточно высокими вероятностями принимать корректные доказательства и отвергать ошибочные.
Определения
Определение: |
вероятностная машина Тьюринга, имеющая доступ к цепочке — доказательству, удовлетворяющая следующим свойствам:
| -системой (системой вероятностно проверяемых доказательств) с полнотой и обоснованностью над алфавитом для языка , где , называется —
Определение: |
Randomness complexity (вероятностной сложностью) | верификатора называется число случайных битов, которое он использует за всё время работы со входом длины .
Определение: |
Query complexity (запросной сложностью) | верификатора называется число запросов битов из , которое он отсылает за всё время работы со входом длины .
Определение: |
Верификатор | называется non-adaptive (неадаптивным), если при отправке запроса не использует ответы на предыдущие. Иными словами, его работа не изменится, если все свои запросы он отправит одновременно.
Определение: |
Сложностный класс Часто обозначают как . | является объединением языков всех , для которых существует -система над бинарным алфавитом с полнотой и обоснованностью , в которой верификатор неадаптивный, работает за полиномиальное время и имеет вероятностную и запросную сложности соответственно и .
Свойства
Теорема: |
= = = |
Доказательство: |
|
Теорема: |
= |
Доказательство: |
Определение coRP |
Теорема: |
= |
Доказательство: |
Определение Σ₁ |
Пример
Теорема: |
Graph Nonisomorphism(GNI) |
Доказательство: |
Верификатором p() { i = random{1, 2}; = random permutation{1..n}; = ; if ( == 0) or ( == 3-i) { return 0; } if ( == i) { return 1; } } Проверим полноту и обоснованность:
|