Лемма о соотношении coNP и IP — различия между версиями
м |
м |
||
Строка 3: | Строка 3: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | <tex>\#SAT=\{\langle \varphi, k \rangle \bigm| \varphi</tex> имеет ровно <tex>k</tex> удовлетворяющих наборов <tex>\}</tex>. | + | <tex>\mathrm{\#SAT}=\{\langle \varphi, k \rangle \bigm| \varphi</tex> имеет ровно <tex>k</tex> удовлетворяющих наборов <tex>\}</tex>. |
}} | }} | ||
Строка 9: | Строка 9: | ||
{{Лемма | {{Лемма | ||
|about=1 | |about=1 | ||
− | |statement=<tex>\sum\limits_{x_1 = 0}^1 \ldots \sum\limits_{x_m = 0}^1 A_\phi(x_1, \ldots, x_m)=k \Leftrightarrow \langle\phi,k\rangle \in \#SAT</tex>. | + | |statement=<tex>\sum\limits_{x_1 = 0}^1 \ldots \sum\limits_{x_m = 0}^1 A_\phi(x_1, \ldots, x_m)=k \Leftrightarrow \langle\phi,k\rangle \in \mathrm{\#SAT}</tex>. |
|proof=Следует из [[Арифметизация булевых формул с кванторами | леммы (1)]]. | |proof=Следует из [[Арифметизация булевых формул с кванторами | леммы (1)]]. | ||
}} | }} | ||
Строка 16: | Строка 16: | ||
{{Лемма | {{Лемма | ||
|about=2 | |about=2 | ||
− | |statement=<tex>\#SAT \in \mathrm{IP}</tex>. | + | |statement=<tex>\mathrm{\#SAT} \in \mathrm{IP}</tex>. |
|proof= | |proof= | ||
Для доказательства леммы построим программы ''Verifier'' и ''Prover'' из [[Интерактивные протоколы. Класс IP. Класс AM#Класс IP|определения]] класса <tex>\mathrm{IP}</tex>. | Для доказательства леммы построим программы ''Verifier'' и ''Prover'' из [[Интерактивные протоколы. Класс IP. Класс AM#Класс IP|определения]] класса <tex>\mathrm{IP}</tex>. | ||
Строка 22: | Строка 22: | ||
Сперва арифметизуем формулу <tex>\phi</tex>. Пусть полученный полином <tex>A(x_1, x_2, ..., x_m)</tex> имеет степень <tex>d</tex>. | Сперва арифметизуем формулу <tex>\phi</tex>. Пусть полученный полином <tex>A(x_1, x_2, ..., x_m)</tex> имеет степень <tex>d</tex>. | ||
− | По лемме (1) вместо условия <tex>\langle \phi, k \rangle \in \#SAT</tex>, можно проверять условие <tex>\sum\limits_{x_1 = 0}^1 \ldots \sum\limits_{x_m = 0}^1 A_\phi(x_1, \ldots, x_m)=k</tex>. | + | По лемме (1) вместо условия <tex>\langle \phi, k \rangle \in \mathrm{\#SAT}</tex>, можно проверять условие <tex>\sum\limits_{x_1 = 0}^1 \ldots \sum\limits_{x_m = 0}^1 A_\phi(x_1, \ldots, x_m)=k</tex>. |
Приступим к описанию ''Verifier'''а. | Приступим к описанию ''Verifier'''а. | ||
Строка 64: | Строка 64: | ||
#Первый факт следует из построения ''Verifier'' 'а. | #Первый факт следует из построения ''Verifier'' 'а. | ||
− | #По [[Арифметизация булевых формул с кванторами | лемме (2)]], если <tex>\sum\limits_{x_1 = 0}^1 \ldots \sum\limits_{x_m = 0}^1 A_\phi(x_1, \ldots, x_m)=k</tex>, то условия (*) выполнятются, следовательно существует такой ''Prover'', что <tex>P(Verifier^{Prover}(\langle\phi,k\rangle)) = 1</tex>, для любой пары <tex>\langle\phi,k\rangle \in \#SAT</tex>. | + | #По [[Арифметизация булевых формул с кванторами | лемме (2)]], если <tex>\sum\limits_{x_1 = 0}^1 \ldots \sum\limits_{x_m = 0}^1 A_\phi(x_1, \ldots, x_m)=k</tex>, то условия (*) выполнятются, следовательно существует такой ''Prover'', что <tex>P(Verifier^{Prover}(\langle\phi,k\rangle)) = 1</tex>, для любой пары <tex>\langle\phi,k\rangle \in \mathrm{\#SAT}</tex>. |
#Пусть количество наборов, удовлетворяющих <tex>\phi</tex>, не равно <tex>k</tex>. Для того, что бы ''Verifier'' вернул '''true''', ''Prover'' 'у необходимо посылать такие <tex>A_i</tex>, чтобы выполнялись все проверяемые условия. Посмотрим на то, что он может послать: | #Пусть количество наборов, удовлетворяющих <tex>\phi</tex>, не равно <tex>k</tex>. Для того, что бы ''Verifier'' вернул '''true''', ''Prover'' 'у необходимо посылать такие <tex>A_i</tex>, чтобы выполнялись все проверяемые условия. Посмотрим на то, что он может послать: | ||
:'''Шаг 0''' | :'''Шаг 0''' | ||
Строка 87: | Строка 87: | ||
|statement=<tex>\mathrm{coNP} \subset \mathrm{IP}</tex>. | |statement=<tex>\mathrm{coNP} \subset \mathrm{IP}</tex>. | ||
|proof= | |proof= | ||
− | Сведём язык <tex>TAUT</tex> к языку <tex>\#SAT</tex> следующим образом: <tex>\phi \mapsto \langle \phi, 2^k \rangle </tex>, где <tex>k</tex> — количество различных переменных в формуле <tex>\phi</tex>. | + | Сведём язык <tex>\mathrm{TAUT}</tex> к языку <tex>\mathrm{\#SAT}</tex> следующим образом: <tex>\phi \mapsto \langle \phi, 2^k \rangle </tex>, где <tex>k</tex> — количество различных переменных в формуле <tex>\phi</tex>. |
− | Очевидно, что <tex>\phi \in TAUT \Leftrightarrow \langle \phi, 2^k \rangle \in \#SAT</tex>. | + | Очевидно, что <tex>\phi \in \mathrm{TAUT} \Leftrightarrow \langle \phi, 2^k \rangle \in \mathrm{\#SAT}</tex>. |
− | По лемме (2) <tex>\#SAT \in \mathrm{IP}</tex>. Тогда <tex>TAUT \in \mathrm{IP}</tex>. Так как <tex>TAUT \in \mathrm{coNPC}</tex>, то <tex>\mathrm{coNP} \subset \mathrm{IP}</tex>. | + | По лемме (2) <tex>\mathrm{\#SAT} \in \mathrm{IP}</tex>. Тогда <tex>\mathrm{TAUT} \in \mathrm{IP}</tex>. Так как <tex>\mathrm{TAUT} \in \mathrm{coNPC}</tex>, то <tex>\mathrm{coNP} \subset \mathrm{IP}</tex>. |
}} | }} | ||
[[Категория: Теория сложности]] | [[Категория: Теория сложности]] |
Версия 01:14, 4 июня 2012
Определение: |
имеет ровно удовлетворяющих наборов . |
Лемма (1): |
. |
Доказательство: |
Следует из леммы (1). |
Лемма (2): |
. |
Доказательство: |
Для доказательства леммы построим программы Verifier и Prover из определения класса . Сперва арифметизуем формулу . Пусть полученный полином имеет степень .По лемме (1) вместо условия , можно проверять условие .Приступим к описанию Verifier'а. Шаг 0 Если постулата Бертрана). Проверим на простоту и на принадлежность заданному промежутку. Как мы знаем, , следовательно на эти операции у Verifier'а уйдёт полиномиальное от размера входа время. или , то Verifier может проверить указанное выше условие сам и вернуть соответствующий результат. Иначе запросим у Prover'а такое простое число , что (такое существует в силуДалее будем проводить все вычисления модулю .Попросим Prover 'а прислать Verifier 'у формулу . Заметим, что размер формулы будет полином от длины входа Verifier 'а, так как полином от одной переменной степени не выше, чем , а значит его можно представить в виде .Проверим следующее утверждение: (*) (здесь и далее под словом «проверим» будем подразумевать следующее: если утверждение верно, Verifier продолжает свою работу, иначе он прекращает свою работу и возвращет false).Шаг i Пусть . Отправим программе Prover.Попросим Prover 'а прислать Verifier 'у формулу .Проверим следующее утверждение: (*).Шаг m Пусть . Отправим программе Prover.Попросим программу Prover прислать Verifier 'у значение .Проверим следующее утверждение: (*). А также сами подставим в и проверим правильность присланного значения .Возвращаем true. Докажем теперь, что построенный таким образом Verifier — корректный. Для этого нужно доказать следующие утверждения:
|
Лемма (3): |
. |
Доказательство: |
Сведём язык к языку следующим образом: , где — количество различных переменных в формуле .Очевидно, что По лемме (2) . . Тогда . Так как , то . |