PCP-система — различия между версиями
Строка 6: | Строка 6: | ||
|definition = | |definition = | ||
<tex>\mathrm{PCP}</tex>'''-системой''' (системой вероятностно проверяемых доказательств) с полнотой <tex>c(n)</tex> и обоснованностью <tex>s(n)</tex> над алфавитом <tex>\Sigma</tex> для языка <tex>L</tex>, где <tex>0 \le s(n) \le c(n) \le 1</tex>, называется <tex>V</tex> {{---}} [[Вероятностные вычисления. Вероятностная машина Тьюринга#Основные определения|вероятностная машина Тьюринга]], имеющая доступ к цепочке <tex>\pi \in \Sigma^{*} : |\pi| \le 2^{poly(|input|)}</tex> {{---}} доказательству, удовлетворяющая следующим свойствам: | <tex>\mathrm{PCP}</tex>'''-системой''' (системой вероятностно проверяемых доказательств) с полнотой <tex>c(n)</tex> и обоснованностью <tex>s(n)</tex> над алфавитом <tex>\Sigma</tex> для языка <tex>L</tex>, где <tex>0 \le s(n) \le c(n) \le 1</tex>, называется <tex>V</tex> {{---}} [[Вероятностные вычисления. Вероятностная машина Тьюринга#Основные определения|вероятностная машина Тьюринга]], имеющая доступ к цепочке <tex>\pi \in \Sigma^{*} : |\pi| \le 2^{poly(|input|)}</tex> {{---}} доказательству, удовлетворяющая следующим свойствам: | ||
− | * '''Полнота''': если <tex>x \in L</tex>, то вероятность того, что <tex>V^{\pi}</tex> допустит <tex>x</tex>, не меньше <tex>c(n)</tex> для некоторой <tex>\pi</tex> | + | * '''Полнота''': если <tex>x \in L</tex>, то вероятность того, что <tex>V^{\pi}</tex> допустит <tex>x</tex>, не меньше <tex>c(n)</tex> для некоторой <tex>\pi</tex>, |
* '''Обоснованность''': если <tex>x \notin L</tex>, то вероятность того, что <tex>V^{\pi}</tex> допустит <tex>x</tex>, не больше <tex>s(n)</tex> для любой <tex>\pi</tex>. | * '''Обоснованность''': если <tex>x \notin L</tex>, то вероятность того, что <tex>V^{\pi}</tex> допустит <tex>x</tex>, не больше <tex>s(n)</tex> для любой <tex>\pi</tex>. | ||
}} | }} | ||
Строка 69: | Строка 69: | ||
} | } | ||
Проверим полноту и обоснованность: | Проверим полноту и обоснованность: | ||
− | * '''Полнота''': если графы неизоморфны, то существует <tex>\pi</tex> такая, что всякий её символ равен 1 или 2 и задан корректно. Тогда на этой <tex>\pi</tex> верификатор всегда вернёт 1 | + | * '''Полнота''': если графы неизоморфны, то существует <tex>\pi</tex> такая, что всякий её символ равен 1 или 2 и задан корректно. Тогда на этой <tex>\pi</tex> верификатор всегда вернёт 1; |
* '''Обоснованность''': если графы изоморфны, то благодаря случайному выбору <tex>i</tex> вероятность ошибки не превышает <tex>{}^1/{}_2</tex>. | * '''Обоснованность''': если графы изоморфны, то благодаря случайному выбору <tex>i</tex> вероятность ошибки не превышает <tex>{}^1/{}_2</tex>. | ||
}} | }} |
Версия 01:31, 4 июня 2012
PCP(probabilistically checkable proof) - вид доказательства, проверяемого рандомизированным алгоритмом, использующим ограниченное число случайных бит и читающим ограниченное число бит доказательства. Такой алгоритм должен с достаточно высокими вероятностями принимать корректные доказательства и отвергать ошибочные.
Определения
Определение: |
вероятностная машина Тьюринга, имеющая доступ к цепочке — доказательству, удовлетворяющая следующим свойствам:
| -системой (системой вероятностно проверяемых доказательств) с полнотой и обоснованностью над алфавитом для языка , где , называется —
Определение: |
Randomness complexity (вероятностной сложностью) | верификатора называется число случайных битов, которые он использует за всё время работы со входом длины .
Определение: |
Query complexity (запросной сложностью) | верификатора называется число запросов битов из , которые он отсылает за всё время работы со входом длины .
Определение: |
Верификатор | называется non-adaptive (неадаптивным), если при отправке запроса не использует ответы на предыдущие. Иными словами, его работа не изменится, если все свои запросы он отправит одновременно.
Определение: |
Сложностный класс Часто обозначают как . | является объединением всех языков , для которых существует -система над бинарным алфавитом с полнотой и обоснованностью , в которой неадаптивный верификатор работает за полиномиальное время и имеет вероятностную и запросную сложности соответственно и .
Свойства
Теорема: |
= = = . |
Доказательство: |
|
Теорема: |
= . |
Доказательство: |
Очевидно следует из определения coRP. |
Теорема: |
= . |
Доказательство: |
Очевидно следует из определения Σ₁. |
Пример
Теорема: |
Graph Nonisomorphism(GNI) . |
Доказательство: |
Верификатором p() { i = random{1, 2}; = random permutation{1..n}; = ; if ( == 0) or ( == 3-i) { return 0; } if ( == i) { return 1; } } Проверим полноту и обоснованность:
|