QpmtnriLmax — различия между версиями
(→Время работы) |
|||
Строка 47: | Строка 47: | ||
|statement= Задача <tex>Q | pmtn | Lmax</tex> может быть решена за <tex> O(n log(n) + mn) </tex> шагов. | |statement= Задача <tex>Q | pmtn | Lmax</tex> может быть решена за <tex> O(n log(n) + mn) </tex> шагов. | ||
|proof= | |proof= | ||
− | Решение <tex>Q | pmtn; ri | Cmax</tex> эквивалентно нахождению наименьшего <tex>T \ge 0</tex>, такого, что задача с | + | Решение <tex>Q | pmtn; ri | Cmax</tex> эквивалентно нахождению наименьшего <tex>T \ge 0</tex>, такого, что задача с допустимым временным интервалом <tex>[r_i, T] (i = 1, . . . , n)</tex> имеет решение. |
− | С другой стороны, решение <tex>Q | pmtn | Lmax</tex> эквивалентно нахождению такого наименьшего <tex>T \ge 0</tex>, такого, что задача с | + | С другой стороны, решение <tex>Q | pmtn | Lmax</tex> эквивалентно нахождению такого наименьшего <tex>T \ge 0</tex>, такого, что задача с временным интервалом <tex>[0, d_i + T]</tex> или <tex>[−T, d_i]</tex> имеет решение. |
}} | }} | ||
Таким образом, задачи <tex>Q | pmtn; ri | Cmax</tex> и <tex>Q | pmtn | Lmax</tex> симметричны. | Таким образом, задачи <tex>Q | pmtn; ri | Cmax</tex> и <tex>Q | pmtn | Lmax</tex> симметричны. |
Версия 16:24, 4 июня 2012
Постановка задачи
Рассмотрим еще одну задачу на нахождение расписания:
1) Каждое задание имеет своё времени выпуска
.2) Срок завершения(дедлайн)
.Требуется минимизировать опоздание
Алгоритм решения
Применим бинарный поиск. Таким образом сведем задачу к поиску потока сети.
Пусть
упорядоченная последовательности всех значений и . Определим для .Расширим сеть, показанную на Рис. 1 следующим образом:
- произвольный интервал-узел. Обозначим через набор предшественников узла , тогда замененная нами подсеть(Рис. 2.1) определяется как . Расширение сети показано на Рис. 2.2.
Cчитаем, что станки индексируются в порядке невозрастания скоростей
, кроме того .Расширенная подсеть строится путем добавления к вершинам
вершин . При , есть дуги от до с емкостью и для всех и существует дуга из в с емкостью .Для каждого
у нас есть такие расширения. Кроме того, мы сохраняем дуги из в емкостью и дуги из в емкостью (Рис. 1).Теорема: |
Следующие свойства эквивалентны:
(А) Существует допустимое расписание. (Б) В расширенной сети существует поток от s до t со значением |
Время работы
Работа с максимальным потоком в расширенной сети занимает
шагов, проверка может быть сделана с такой же скоростью. Для решения мы используем бинарный поиск, получается алгоритм со сложностью , потому как , ограничен , при .представляет собой частный случай , и может быть решена более эффективно. Labetoulle, Lawler, Lenstra, и Rinnooy Kan разработали алгоритм работающий за специально для этого случая.
Утверждение: |
Задача может быть решена за шагов. |
Решение С другой стороны, решение эквивалентно нахождению наименьшего , такого, что задача с допустимым временным интервалом имеет решение. эквивалентно нахождению такого наименьшего , такого, что задача с временным интервалом или имеет решение. |
Таким образом, задачи
и симметричны.Источники
- Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — 379 стр. — ISBN 978-3-540-69515-8