Примеры NP-полных языков. Теорема Кука — различия между версиями
Shevchen (обсуждение | вклад) (Заменил жирные классы на \mathrm) |
Shevchen (обсуждение | вклад) м |
||
Строка 13: | Строка 13: | ||
<tex> \mathrm{BH_{1N}} </tex> {{---}} язык троек <tex> \langle m, x, 1^t \rangle </tex>, таких что недетерминированная машина Тьюринга <tex> m </tex> на входной строке <tex> x </tex> возращает <tex>1</tex> за время <tex> T(m, x) \le t </tex>. | <tex> \mathrm{BH_{1N}} </tex> {{---}} язык троек <tex> \langle m, x, 1^t \rangle </tex>, таких что недетерминированная машина Тьюринга <tex> m </tex> на входной строке <tex> x </tex> возращает <tex>1</tex> за время <tex> T(m, x) \le t </tex>. | ||
− | <tex> \mathrm{BH_{1N}} = \lbrace \langle m, x, 1^t \rangle \bigm| m </tex> {{---}} | + | <tex> \mathrm{BH_{1N}} = \lbrace \langle m, x, 1^t \rangle \bigm| m </tex> {{---}} недетерминированная машина Тьюринга, <tex> m(x) = 1, T(m,x) \le t \rbrace </tex> |
{{Теорема | {{Теорема | ||
|statement=<tex> \mathrm{BH_{1N}} \in \mathrm{NPC} </tex> | |statement=<tex> \mathrm{BH_{1N}} \in \mathrm{NPC} </tex> |
Версия 17:08, 4 июня 2012
Эта статья находится в разработке!
Содержание
Введение
В этой статье мы рассмотрим класс
-полных языков — . является одним из важнейших классов в теории сложности, так как если найдется язык из этого класса, который также входит в класс , тогда окажется, что .Мы рассмотрим некоторые языки и докажем их сведений по Карпу будем сводить уже известные языки из к новым языкам, тем самым доказывая их -трудность, а потом и -полноту. Доказательство -полноты будет состоять из двух пунктов: доказательство -трудности и принадлежности языка классу .
-полноту. Начнем мы с языка , так как к нему несложно сводятся все языки из . Потом с помощьюNP-полнота
— язык троек , таких что недетерминированная машина Тьюринга на входной строке возращает за время .
— недетерминированная машина Тьюринга,
Теорема: |
Доказательство: |
|
NP-полнота
— язык булевых формул из переменных, для которых существует подстановка, при которой формула истинна.
Теорема (Кук): |
Доказательство: |
for : = choose ; if == 1: return 1 else return 0 |